File size: 9,322 Bytes
dcbacef
 
 
e7daf3e
dcbacef
 
 
e7daf3e
 
 
aae3832
e7daf3e
 
c7a6074
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
080d49a
6e9030c
 
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
2ee80ee
e7daf3e
 
 
 
 
2ee80ee
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43813e
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
58a3756
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3756
 
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31aceda
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504e88e
 
 
 
 
 
 
 
 
 
 
e7daf3e
 
 
 
 
 
504e88e
092425d
504e88e
 
 
 
 
 
 
 
e7daf3e
 
504e88e
 
092425d
504e88e
 
 
 
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b132c
 
e7daf3e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
pipeline_tag: text-to-image
license: other
license_name: faipl-1.0-sd
license_link: LICENSE
decoder:
- Disty0/sotediffusion-wuerstchen3-alpha1-decoder
---


# SoteDiffusion Wuerstchen3

Anime finetune of Würstchen V3.  
Currently is in early state in training.  
No commercial use thanks to StabilityAI.  

# Release Notes

Did major cleanup on the dataset in this release.  
Changed the training parameters and started from a fresh state.  
Switch to FairAI license. (Still no commercial use.)  


<table>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/oKTevlG-qi5Jfdy6TkGeI.png" height="576">
</table> 


# UI Guide

## SD.Next
Switch to the dev branch:
```
git checkout dev
```
Go to Models -> Huggingface and type `Disty0/sotediffusion-wuerstchen3-alpha1-decoder` into the model name and press download.  
Load `Disty0/sotediffusion-wuerstchen3-alpha1-decoder` after the download process is complete.  

Parameters:  
Sampler: Default  

Steps: 30 or 40  
Secondary Steps: 10  

CFG: 8  
Secondary CFG: 1 or 1.2  

Resolution: 1024x1536, 2048x1152  
Anything works as long as it's a multiply of 128.

## ComfyUI
Please refer to CivitAI: https://civitai.com/models/353284  


# Code Example

```shell
pip install diffusers
```

```python
import torch
from diffusers import StableCascadeCombinedPipeline

device = "cuda"
dtype = torch.bfloat16
model = "Disty0/sotediffusion-wuerstchen3-alpha1-decoder"

pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype)

# send everything to the gpu:
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)

# or enable model offload to save vram:
# pipe.enable_model_cpu_offload()



prompt = "extremely aesthetic, best quality, newest, general, 1girl, solo, looking at viewer, blush, slight smile, cat ears, long hair, dress, bare shoulders, cherry blossoms, flowers, petals, vegetation, wind,"
negative_prompt = "very displeasing, worst quality, oldest, monochrome, sketch, loli, child,"

output = pipe(
    width=1024,
    height=1536,
    prompt=prompt,
    negative_prompt=negative_prompt,
    decoder_guidance_scale=1.2,
    prior_guidance_scale=8.0,
    prior_num_inference_steps=40,
    output_type="pil",
    num_inference_steps=10
).images[0]

## do something with the output image
```


## Training Status:

**GPU used for training**: 1x AMD RX 7900 XTX 24GB  
**GPU Hours**: 100  

| dataset name | training done | remaining |
|---|---|---|
| **newest** | 003 | 228 |
| **recent** | 003 | 169 |
| **mid** | 003 | 121 |
| **early** | 003 | 067 |
| **oldest** | 003 | 017 |
| **pixiv** | 003 | 039 |
| **visual novel cg** | 003 | 025 |
| **anime wallpaper** | 003 | 010 |
| **Total** | 32 | 682 |

**Note**: chunks starts from 0 and there are 8000 images per chunk  


## Dataset:

**GPU used for captioning**: 1x Intel ARC A770 16GB  
**GPU Hours**: 350  

**Model used for captioning**: SmilingWolf/wd-swinv2-tagger-v3  
**Command:**  
```
python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
```


| dataset name | total images | total chunk |
|---|---|---|
| **newest** | 1.848.331 | 232 |
| **recent** | 1.380.630 | 173 |
| **mid** | 993.227 | 125 |
| **early** | 566.152 | 071 |
| **oldest** | 160.397 | 021 |
| **pixiv** | 343.614 | 043 |
| **visual novel cg** | 231.358 | 029 |
| **anime wallpaper** | 104.790 | 014 |
| **Total** | 5.628.499 | 708 |

**Note**:  
 - Smallest size is 1280x600 | 768.000 pixels
 - Deduped based on image similarity using czkawka-cli


## Tags:

```
aesthetic tags, quality tags, date tags, custom tags, rating tags, character tags, rest of the tags
```

### Date:
| tag | date |
|---|---|
| **newest** | 2022 to 2024 |
| **recent** | 2019 to 2021 |
| **mid** | 2015 to 2018 |
| **early** | 2011 to 2014 |
| **oldest** | 2005 to 2010 |

### Aesthetic Tags:

**Model used**: shadowlilac/aesthetic-shadow-v2

| score greater than | tag | count |
|---|---|---|
| **0.90** | extremely aesthetic | 125.451 |
| **0.80** | very aesthetic | 887.382 |
| **0.70** | aesthetic | 1.049.857 |
| **0.50** | slightly aesthetic | 1.643.091 |
| **0.40** | not displeasing | 569.543 |
| **0.30** | not aesthetic | 445.188 |
| **0.20** | slightly displeasing | 341.424 |
| **0.10** | displeasing | 237.660 |
| **rest of them** | very displeasing | 328.712 |

### Quality Tags:

**Model used**: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth


| score greater than | tag | count |
|---|---|---|
| **0.980** | best quality | 1.270.447 |
| **0.900** | high quality | 498.244 |
| **0.750** | great quality | 351.006 |
| **0.500** | medium quality | 366.448 |
| **0.250** | normal quality | 368.380 |
| **0.125** | bad quality | 279.050 |
| **0.025** | low quality | 538.958 |
| **rest of them** | worst quality | 1.955.966 |

## Rating Tags

| tag | count |
|---|---|
| general | 1.416.451 |
| sensitive | 3.447.664 |
| nsfw | 427.459 |
| explicit nsfw | 336.925 |

## Custom Tags:

| dataset name | custom tag |
|---|---|
| **image boards** | date, |
| **pixiv** | art by Display_Name, |
| **visual novel cg** | Full_VN_Name (short_3_letter_name), visual novel cg, |
| **anime wallpaper** | date, anime wallpaper, |

## Training Params:

**Software used**: Kohya SD-Scripts with Stable Cascade branch  
**Base model**: Disty0/sote-diffusion-cascade-alpha0  

### Command:
```shell
LD_PRELOAD=/usr/lib/libtcmalloc.so.4 accelerate launch  --mixed_precision fp16 --num_cpu_threads_per_process 1 stable_cascade_train_stage_c.py \
--mixed_precision fp16 \
--save_precision fp16 \
--full_fp16 \
--sdpa \
--gradient_checkpointing \
--train_text_encoder \
--resolution "1024,1024" \
--train_batch_size 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1e-5 \
--learning_rate_te1 1e-5 \
--lr_scheduler constant_with_warmup \
--lr_warmup_steps 100 \
--optimizer_type adafactor \
--optimizer_args "scale_parameter=False" "relative_step=False" "warmup_init=False" \
--max_grad_norm 0 \
--token_warmup_min 1 \
--token_warmup_step 0 \
--shuffle_caption \
--caption_separator ", " \
--caption_dropout_rate 0 \
--caption_tag_dropout_rate 0 \
--caption_dropout_every_n_epochs 0 \
--dataset_repeats 1 \
--save_state \
--save_every_n_steps 256 \
--sample_every_n_steps 64 \
--max_token_length 225 \
--max_train_epochs 1 \
--caption_extension ".txt" \
--max_data_loader_n_workers 2 \
--persistent_data_loader_workers \
--enable_bucket \
--min_bucket_reso 256 \
--max_bucket_reso 4096 \
--bucket_reso_steps 64 \
--bucket_no_upscale \
--log_with tensorboard \
--output_name sotediffusion-wr3_3b \
--train_data_dir /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005 \
--in_json /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005.json \
--output_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005 \
--logging_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005/logs \
--resume /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b-state \
--stage_c_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b.safetensors \
--text_model_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b_text_model.safetensors \
--effnet_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/effnet_encoder.safetensors \
--previewer_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/previewer.safetensors \
--sample_prompts /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/config/sotediffusion-prompt.txt
```


## Limitations and Bias

### Bias

- This model is intended for anime illustrations.  
  Realistic capabilites are not tested at all.  
- Still underbaked.  

### Limitations
- Can fall back to realistic.  
  Add "realistic" tag to the negatives when this happens.  
- Far shot eyes can be bad.  
- Anatomy and hands can be bad.  


## License
(This part is copied directly from Animagine V3.1 and modified.)

SoteDiffusion models falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points:

1. **Modification Sharing:** If you modify SoteDiffusion models, you must share both your changes and the original license.
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules.
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

**Notes**: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT. Meaning, still no commercial use of any kind.