--- pipeline_tag: text-to-image license: other license_name: faipl-1.0-sd license_link: LICENSE decoder: - Disty0/sotediffusion-wuerstchen3-alpha1-decoder --- # SoteDiffusion Wuerstchen3 Anime finetune of Würstchen V3. Currently is in early state in training. No commercial use thanks to StabilityAI. # Release Notes Did major cleanup on the dataset in this release. Changed the training parameters and started from a fresh state. Switch to FairAI license. (Still no commercial use.)
# Code Example ```shell pip install diffusers ``` ```python import torch from diffusers import StableCascadeCombinedPipeline device = "cuda" dtype = torch.bfloat16 model = "Disty0/sotediffusion-wuerstchen3-alpha1-decoder" pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype) # send everything to the gpu: pipe = pipe.to(device, dtype=dtype) pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype) # or enable model offload to save vram: # pipe.enable_model_cpu_offload() prompt = "1girl, solo, cowboy shot, straight hair, looking at viewer, hoodie, indoors, slight smile, casual, furniture, doorway, very aesthetic, best quality, newest," negative_prompt = "very displeasing, worst quality, oldest, monochrome, sketch, realistic," output = pipe( width=1024, height=1536, prompt=prompt, negative_prompt=negative_prompt, decoder_guidance_scale=1.0, prior_guidance_scale=8.0, prior_num_inference_steps=40, output_type="pil", num_inference_steps=10 ).images[0] ## do something with the output image ``` ## Training Status: **GPU used for training**: 1x AMD RX 7900 XTX 24GB **GPU Hours**: 100 | dataset name | training done | remaining | |---|---|---| | **newest** | 003 | 228 | | **recent** | 003 | 169 | | **mid** | 003 | 121 | | **early** | 003 | 067 | | **oldest** | 003 | 017 | | **pixiv** | 003 | 039 | | **visual novel cg** | 003 | 025 | | **anime wallpaper** | 003 | 010 | | **Total** | 32 | 682 | **Note**: chunks starts from 0 and there are 8000 images per chunk ## Dataset: **GPU used for captioning**: 1x Intel ARC A770 16GB **GPU Hours**: 350 **Model used for captioning**: SmilingWolf/wd-swinv2-tagger-v3 **Command:** ``` python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./ ``` | dataset name | total images | total chunk | |---|---|---| | **newest** | 1.848.331 | 232 | | **recent** | 1.380.630 | 173 | | **mid** | 993.227 | 125 | | **early** | 566.152 | 071 | | **oldest** | 160.397 | 021 | | **pixiv** | 343.614 | 043 | | **visual novel cg** | 231.358 | 029 | | **anime wallpaper** | 104.790 | 014 | | **Total** | 5.628.499 | 708 | **Note**: - Smallest size is 1280x600 | 768.000 pixels - Deduped based on image similarity using czkawka-cli ## Tags: Model is trained with random tag order but this is the order in the dataset if you are interested: ``` aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags ``` ### Date: | tag | date | |---|---| | **newest** | 2022 to 2024 | | **recent** | 2019 to 2021 | | **mid** | 2015 to 2018 | | **early** | 2011 to 2014 | | **oldest** | 2005 to 2010 | ### Aesthetic Tags: **Model used**: shadowlilac/aesthetic-shadow-v2 | score greater than | tag | count | |---|---|---| | **0.90** | extremely aesthetic | 125.451 | | **0.80** | very aesthetic | 887.382 | | **0.70** | aesthetic | 1.049.857 | | **0.50** | slightly aesthetic | 1.643.091 | | **0.40** | not displeasing | 569.543 | | **0.30** | not aesthetic | 445.188 | | **0.20** | slightly displeasing | 341.424 | | **0.10** | displeasing | 237.660 | | **rest of them** | very displeasing | 328.712 | ### Quality Tags: **Model used**: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth | score greater than | tag | count | |---|---|---| | **0.980** | best quality | 1.270.447 | | **0.900** | high quality | 498.244 | | **0.750** | great quality | 351.006 | | **0.500** | medium quality | 366.448 | | **0.250** | normal quality | 368.380 | | **0.125** | bad quality | 279.050 | | **0.025** | low quality | 538.958 | | **rest of them** | worst quality | 1.955.966 | ## Rating Tags | tag | count | |---|---| | **general** | 1.416.451 | | **sensitive** | 3.447.664 | | **nsfw** | 427.459 | | **explicit nsfw** | 336.925 | ## Custom Tags: | dataset name | custom tag | |---|---| | **image boards** | date, | | **pixiv** | art by Display_Name, | | **visual novel cg** | Full_VN_Name (short_3_letter_name), visual novel cg, | | **anime wallpaper** | date, anime wallpaper, | ## Training Parameters: **Software used**: Kohya SD-Scripts with Stable Cascade branch https://github.com/kohya-ss/sd-scripts/tree/stable-cascade **Base model**: Disty0/sote-diffusion-cascade-alpha0 ### Command: ```shell LD_PRELOAD=/usr/lib/libtcmalloc.so.4 accelerate launch --mixed_precision fp16 --num_cpu_threads_per_process 1 stable_cascade_train_stage_c.py \ --mixed_precision fp16 \ --save_precision fp16 \ --full_fp16 \ --sdpa \ --gradient_checkpointing \ --train_text_encoder \ --resolution "1024,1024" \ --train_batch_size 2 \ --gradient_accumulation_steps 8 \ --learning_rate 1e-5 \ --learning_rate_te1 1e-5 \ --lr_scheduler constant_with_warmup \ --lr_warmup_steps 100 \ --optimizer_type adafactor \ --optimizer_args "scale_parameter=False" "relative_step=False" "warmup_init=False" \ --max_grad_norm 0 \ --token_warmup_min 1 \ --token_warmup_step 0 \ --shuffle_caption \ --caption_separator ", " \ --caption_dropout_rate 0 \ --caption_tag_dropout_rate 0 \ --caption_dropout_every_n_epochs 0 \ --dataset_repeats 1 \ --save_state \ --save_every_n_steps 256 \ --sample_every_n_steps 64 \ --max_token_length 225 \ --max_train_epochs 1 \ --caption_extension ".txt" \ --max_data_loader_n_workers 2 \ --persistent_data_loader_workers \ --enable_bucket \ --min_bucket_reso 256 \ --max_bucket_reso 4096 \ --bucket_reso_steps 64 \ --bucket_no_upscale \ --log_with tensorboard \ --output_name sotediffusion-wr3_3b \ --train_data_dir /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005 \ --in_json /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005.json \ --output_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005 \ --logging_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005/logs \ --resume /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b-state \ --stage_c_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b.safetensors \ --text_model_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b_text_model.safetensors \ --effnet_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/effnet_encoder.safetensors \ --previewer_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/previewer.safetensors \ --sample_prompts /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/config/sotediffusion-prompt.txt ``` ## Limitations and Bias ### Bias - This model is intended for anime illustrations. Realistic capabilites are not tested at all. ### Limitations - Can fall back to realistic. Add "realistic" tag to the negatives when this happens. - Far shot eyes can be bad. - Anatomy and hands can be bad. - Still in active training. ## License (This part is copied directly from Animagine V3.1 and modified.) SoteDiffusion models falls under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) license, which is compatible with Stable Diffusion models’ license. Key points: 1. **Modification Sharing:** If you modify SoteDiffusion models, you must share both your changes and the original license. 2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too. 3. **Distribution Terms:** Any distribution must be under this license or another with similar rules. 4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values. **Notes**: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT. Meaning, still no commercial use of any kind.