Ditrip commited on
Commit
373f826
·
1 Parent(s): ec0c8e1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 130.35 +/- 42.02
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 272.14 +/- 12.85
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12b7477d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12b7477e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12b7477eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12b7477f40>", "_build": "<function ActorCriticPolicy._build at 0x7f12b7484040>", "forward": "<function ActorCriticPolicy.forward at 0x7f12b74840d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12b7484160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12b74841f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12b7484280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12b7484310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12b74843a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12b7484430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f12b74882c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 7000064, "_total_timesteps": 7000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685962894953640154, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKb4jr0fZcW5cwhQOzcKHDj1nzG7ZfYDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -9.142857142929728e-06, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGBPkRzzVeMAWyUTegDjAF0lEdAvra4lu3tr3V9lChoBkdAYu3iQT238WgHTegDaAhHQL63/H6dlNF1fZQoaAZHQE22PFvQ4S9oB03oA2gIR0C+uT9wR5C4dX2UKGgGR0BhsfIEKVpsaAdN6ANoCEdAvrpWZBsyi3V9lChoBkdAYkZ+qBEroWgHTegDaAhHQL67ZRgqmTF1fZQoaAZHQGQmmlqJuVJoB03oA2gIR0C+vHXJYDDCdX2UKGgGR0Bjp9dJJ5E/aAdN6ANoCEdAvr2XeZXuE3V9lChoBkdAYcvnhbW3B2gHTegDaAhHQL6+voPkJa91fZQoaAZHQEJfMeOn2qVoB0t5aAhHQL6+2ddmg8N1fZQoaAZHQGMkMF+uvEFoB03oA2gIR0C+v/1rl/6PdX2UKGgGR0BiwAb6xgRcaAdN6ANoCEdAvsEmI9C/oXV9lChoBkdAZMTIGQjlgmgHTegDaAhHQL7CSz4k/r11fZQoaAZHQGJ4l98Z1mtoB03oA2gIR0C+w3XYHxBmdX2UKGgGR0BlDGn/DLr5aAdN6ANoCEdAvsSnY4ACGXV9lChoBkdAYdcMfA9FF2gHTegDaAhHQL7F2F9a2Wp1fZQoaAZHQGcTX6yjYZloB03oA2gIR0C+xxPLPldUdX2UKGgGR0BjLyMvRJEqaAdN6ANoCEdAvshBkbxVhnV9lChoBkdAZslPcBU70WgHTegDaAhHQL7JjU+9rXV1fZQoaAZHQGY4esxO+IxoB03oA2gIR0C+yshmbsnidX2UKGgGR0BhLdymygPFaAdN6ANoCEdAvsvrqmj0tnV9lChoBkdAaEPbrTpgTmgHTegDaAhHQL7NAlgMMJB1fZQoaAZHQGXqYWDYh+xoB03oA2gIR0C+ziarWAf/dX2UKGgGR0BgDnyEtdzGaAdN6ANoCEdAvs8vqB3A23V9lChoBkdAY9GRhc7hemgHTegDaAhHQL7QQKjSG8F1fZQoaAZHQGYtYL1EmY1oB03oA2gIR0C+0VIcaOxTdX2UKGgGR0BnkI5YHPeIaAdN6ANoCEdAvtJpCw8nu3V9lChoBkdATaTWCmMwUWgHS5doCEdAvtKIod+5OXV9lChoBkdAWPTd9Dx9X2gHS5NoCEdAvtKmpAD7qXV9lChoBkdAZ4hCMPz4DmgHTegDaAhHQL7TsMINVip1fZQoaAZHQGALUb1h9b5oB03oA2gIR0C+1Lm47Rv4dX2UKGgGR0Bmm/dM0xdqaAdN6ANoCEdAvtW937k4m3V9lChoBkdAYlBmV7hNumgHTegDaAhHQL7WwKcd5pt1fZQoaAZHQGNSk8aGYa5oB03oA2gIR0C+2AMiGFi8dX2UKGgGR0BlRF0A93bFaAdN6ANoCEdAvtlGee4Cp3V9lChoBkdATciV6eGwimgHS3toCEdAvtljQBxPwnV9lChoBkdAZL3solUp/mgHTegDaAhHQL7aj7fpD/l1fZQoaAZHQGPZgvUSZjRoB03oA2gIR0C+28A1rIo3dX2UKGgGR0BmEdHMEA5raAdN6ANoCEdAvtzqC2+fy3V9lChoBkdAZrTalDWsimgHTegDaAhHQL7d7jPOY6Z1fZQoaAZHQGMW0KArhBJoB03oA2gIR0C+3w+jqOcUdX2UKGgGR0BgQu+VTrE+aAdN6ANoCEdAvuBKQU5+6XV9lChoBkdAZBTtvXK8tmgHTegDaAhHQL7hdI1LrX11fZQoaAZHQDfjuw5eZ5RoB0uIaAhHQL7hnCHh0hh1fZQoaAZHQEFS+dsi0OVoB0uQaAhHQL7hxe54GEB1fZQoaAZHQGZ4XxnWattoB03oA2gIR0C+4t6GHpKSdX2UKGgGR0BlV6Kk2xY8aAdN6ANoCEdAvuPi8CgbqHV9lChoBkdAQYKIUJv5xmgHS1toCEdAvuP1SbYsd3V9lChoBkdAZNSoE0SAY2gHTegDaAhHQL7k/VLi++N1fZQoaAZHQGWeu8brC3xoB03oA2gIR0C+5gM5bQkYdX2UKGgGR0BfRqEvkBCEaAdN6ANoCEdAvucJRk3CK3V9lChoBkdAYprb4agmJGgHTegDaAhHQL7oE6DGtIV1fZQoaAZHQGM/tPxhDw9oB03oA2gIR0C+6V7Vz6rOdX2UKGgGR0BkOauhbnoxaAdN6ANoCEdAvuqqeBg/knV9lChoBkdAY3OYWLxZuGgHTegDaAhHQL7r8JyQxN91fZQoaAZHQGadys0YTCdoB03oA2gIR0C+7Sa2jO9ndX2UKGgGR0Bklb/dZaFFaAdN6ANoCEdAvu5/gflp5HV9lChoBkdAZArrcCYCyWgHTegDaAhHQL7vsM+NcW11fZQoaAZHQGYSTvRZ2ZBoB03oA2gIR0C+8O3P7el9dX2UKGgGR0Bkd65LAYYSaAdN6ANoCEdAvvI6irT6SHV9lChoBkdAIXxwhnrY5GgHS5hoCEdAvvJcDxLCenV9lChoBkdAXIuiHqNZNmgHTegDaAhHQL7znb0voNd1fZQoaAZHQGa/mUOd5IJoB03oA2gIR0C+9M+7L+xXdX2UKGgGR0BkfxNGmUGFaAdN6ANoCEdAvvXmM0gr6XV9lChoBkdAJ4Gmce8wpWgHS1xoCEdAvvX5WGRFJHV9lChoBkdAWoN2ll9SdmgHTegDaAhHQL73C35N47l1fZQoaAZHQFCH2dd3SrpoB0uJaAhHQL73KD/lyR11fZQoaAZHQGN+aQV9F4NoB03oA2gIR0C++FPnB+F2dX2UKGgGR0BfvMj3VTaTaAdN6ANoCEdAvvmcVoHs1XV9lChoBkdAZwWHCXQdCGgHTegDaAhHQL76tDkELYx1fZQoaAZHQD8r5DZ13dNoB0tpaAhHQL76ypBX0Xh1fZQoaAZHQGWdf3WWhRJoB03oA2gIR0C++94LofSydX2UKGgGR0BjDn1jAi3YaAdN6ANoCEdAvvz0m/nGKnV9lChoBkdAY7UUB4lhPWgHTegDaAhHQL7+E3yZrpJ1fZQoaAZHQGMg8LronrpoB03oA2gIR0C+/yn+hoM8dX2UKGgGR0BjLwlF+d9VaAdN6ANoCEdAvwBATM7lrHV9lChoBkdAZF4lgMMI/2gHTegDaAhHQL8BXn7Hhjx1fZQoaAZHQGKti2+fywxoB03oA2gIR0C/Aohe1KGtdX2UKGgGR0BRGM1baAWjaAdN6ANoCEdAvwOwQCjk/HV9lChoBkdAZK35ZbILgGgHTegDaAhHQL8E1hiLEUF1fZQoaAZHQGHXRsdkrgBoB03oA2gIR0C/BfvTLGJfdX2UKGgGR0Bl/LpFCswMaAdN6ANoCEdAvwcinyd4FHV9lChoBkfAa3ZCQcPvrmgHTeYBaAhHQL8H0yAQQMB1fZQoaAZHQGIl4ffXPJJoB03oA2gIR0C/CPfoV2zOdX2UKGgGR8BjWa2BreqJaAdN7AFoCEdAvwlo5hjOLXV9lChoBkdAYu0NaQmu1WgHTegDaAhHQL8Kkn+Q2dd1fZQoaAZHQGA5U+s5n15oB03oA2gIR0C/C675Ec81dX2UKGgGR0BhbtLrX18LaAdN6ANoCEdAvwy9lpXZG3V9lChoBkdAYy4DTSb6QGgHTegDaAhHQL8N1zGgi/x1fZQoaAZHQGYjMKsuFpRoB03oA2gIR0C/Dv2CAc1gdX2UKGgGR0BAfn1OCXhPaAdLVGgIR0C/DxDEm6XjdX2UKGgGR0BlKebXpW3jaAdN6ANoCEdAvxBASkCV8nV9lChoBkdAY2PUlzEJjWgHTegDaAhHQL8RlzPrv9d1fZQoaAZHQGcFehPCVKRoB03oA2gIR0C/ErkzsQd0dX2UKGgGR0BRzSylenhsaAdN6ANoCEdAvxPa/ATIvXV9lChoBkdAYp9bfxc3VGgHTegDaAhHQL8VAxXnyNJ1fZQoaAZHQFpijt5UtI1oB03oA2gIR0C/FimdupCKdX2UKGgGR0BjOPHPu5SWaAdN6ANoCEdAvxdM2Jiy6nV9lChoBkdAVUonb7CSBGgHS41oCEdAvxdsnb7CSHV9lChoBkdADKCvovBacWgHS1xoCEdAvxeBOqNp/XV9lChoBkdAYPgBwuM+/2gHTegDaAhHQL8Yo/9Hc1x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 27344, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.97, "ent_coef": 0.1, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-73-generic-x86_64-with-glibc2.31 # 80~20.04.1-Ubuntu SMP Wed May 17 14:58:14 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1.post201", "GPU Enabled": "True", "Numpy": "1.23.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21b9512050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21b95120e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21b9512170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21b9512200>", "_build": "<function ActorCriticPolicy._build at 0x7f21b9512290>", "forward": "<function ActorCriticPolicy.forward at 0x7f21b9512320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21b95123b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21b9512440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21b95124d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21b9512560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21b95125f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21b9512680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f21b950f480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686994328762176983, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM1hTyPnlO6Erk5tPMgGC5e+Uu7X32XMwAAgD8AAIA/gPMgvh4dez9SAKq9hRcNv8jCRb59G/E9AAAAAAAAAAAA47A9gSETP27wObyycPu+MnuwPPdVkr0AAAAAAAAAAICeVj1Acak/C1M5P9D1Ib87Jra87EhHPQAAAAAAAAAAAKUtvTyn9z4yge891cCmvg1bPjvTMLA9AAAAAAAAAADA6IA9u9GtP6rlKz82Xry+1nglvCc4wT0AAAAAAAAAAM3ijb2EdCU+m4E/Pn78hL7ev6U9jWc9uwAAAAAAAAAAQEELvncTPT51S0o+XSJ7vj8/tz29zU29AAAAAAAAAADmMg4+Q/WFP4Wo6T7r9DG/r5d6PjYOIj4AAAAAAAAAAPPruz3Xgyc8JlCJvrY7br6U96+9Um1IPAAAAAAAAAAAmrAnPjnUhD4e9hK/5TpmvrKadr30aY++AAAAAAAAAAAze4A8w+kzuqjeeb0734O0OcjFOTDL/jMAAIA/AACAPxoLZD3fX1g+DTFUvs+Xbb781jS9AhxkvQAAAAAAAAAAAHzUvaqZez7+1o4+lZ6EvvXWIz6+n4E8AAAAAAAAAABjZ5S+JMo/vRIj1LozRqq5BcCqPqvvEzoAAIA/AACAP2b4BrzhSKi6L/wQtOY/TC9UC6k51biTMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/1cqe9SMuMAWyUS9aMAXSUR0ChD6Os90RwdX2UKGgGR0BxKZet0V8DaAdL9mgIR0ChD93UhFEzdX2UKGgGR0BwnmJ+DvmYaAdL52gIR0ChEBp6Y3NtdX2UKGgGR0Bzcmo73fygaAdNCAFoCEdAoRBdyxRl6XV9lChoBkdAciuKrJbMYGgHS+ZoCEdAoRDRDNQj2XV9lChoBkdAcTqzO5avBGgHS/ZoCEdAoRDhUzbeuXV9lChoBkdAbujKOktVaWgHS+loCEdAoRF5f6XSjXV9lChoBkdAb2yO4G2TgWgHS9doCEdAoRF5d+ocaXV9lChoBkdAcFkemelKsmgHS+poCEdAoRGMafjCHnV9lChoBkdAcCLpKBd2PmgHS+toCEdAoRGyWZ7Xx3V9lChoBkdAcDCuDBdld2gHS+NoCEdAoRG5wn6VMXV9lChoBkdAcs5aWX1J2GgHS+RoCEdAoRHQKjSG8HV9lChoBkdAcbsys0YTCmgHS+poCEdAoRHwhbGFSXV9lChoBkdAb9Vog3cYZWgHTQEBaAhHQKER/A1vVEx1fZQoaAZHQHEFUnTiKixoB0vqaAhHQKESCuXeFcp1fZQoaAZHQHDeaa1Cw8poB0vUaAhHQKESbYcNpdt1fZQoaAZHQHKd14LThHdoB0vwaAhHQKES+mOU+s51fZQoaAZHQHEBA3HaN+9oB00TAWgIR0ChEx4ACGN8dX2UKGgGR0A/gcW0qpcYaAdLwGgIR0ChE0utnwocdX2UKGgGR0Bu/04T9KmLaAdL6GgIR0ChE2T6i0v5dX2UKGgGR0ByQL0rbxmTaAdNBQFoCEdAoROElme18nV9lChoBkdAcIygkka/AWgHS+FoCEdAoRSDyxzJZHV9lChoBkdAcBGt/nW8RWgHS/FoCEdAoRSzb8FY+3V9lChoBkdAbWoZ2IO6NGgHS9JoCEdAoRTJG+bmVHV9lChoBkdAcGbhoduHe2gHS+5oCEdAoRTpgTh5xHV9lChoBkdAcksIvJzT4WgHS/9oCEdAoRTpKlHjInV9lChoBkdAc17O1v2oN2gHTTUBaAhHQKEVGR9PUKB1fZQoaAZHQHCDVY6nzhBoB00EAWgIR0ChFTG+9Jz1dX2UKGgGR0Bx7eHARChOaAdL82gIR0ChFTMijcmCdX2UKGgGR0ByKFeIEbHZaAdL0mgIR0ChFVS9du50dX2UKGgGR0Bxa+VTrE9/aAdNEgFoCEdAoRV4vexfOXV9lChoBkdAcJA3trsSkGgHS9NoCEdAoR/19YwIt3V9lChoBkdAcS9JpFkQPWgHTTIBaAhHQKEgE6+WWyF1fZQoaAZHQG8ce8wpON5oB0vVaAhHQKEgaYNRWLh1fZQoaAZHQHAndRrJr+JoB0vtaAhHQKEgbhb4agp1fZQoaAZHQHIKHMQmNR5oB0vmaAhHQKEhCgB91EF1fZQoaAZHQHPTGeYlY2doB00eAWgIR0ChIhTIV/MGdX2UKGgGR0Bx7WrT6SDAaAdL0GgIR0ChIqdUS7GvdX2UKGgGR0BxuMLkS26TaAdL7GgIR0ChIrsmnfl7dX2UKGgGR0BxDBa/yoXLaAdL4mgIR0ChIsKtxMnJdX2UKGgGR0ByKgytV7x/aAdL22gIR0ChIunvMKTjdX2UKGgGR0Burz8pCrtFaAdL8GgIR0ChIysf7rLRdX2UKGgGR0Byv0JC0F8paAdL12gIR0ChI4GpEQXidX2UKGgGR0By0BbwBo25aAdL52gIR0ChI5s4tHx0dX2UKGgGR0BzPysKb8WLaAdL72gIR0ChI8I9LYf5dX2UKGgGR0Bxa4fms/6gaAdL9mgIR0ChI8KT0QK8dX2UKGgGR0Byup29tdiVaAdL4WgIR0ChI+zK9wm3dX2UKGgGR0BwxLEUCaJAaAdL0WgIR0ChJHqj8DSxdX2UKGgGR0BO/h3Roh6jaAdLwWgIR0ChJHs7lq8EdX2UKGgGR0BxNI052hZhaAdNCgFoCEdAoSW6emNzbXV9lChoBkdAcBwizLOiWWgHS91oCEdAoSW7Aaef7XV9lChoBkdAcSopCrtE5WgHTQABaAhHQKElxi6xxDN1fZQoaAZHQHDyiBoVVPxoB0vQaAhHQKEnFozvZyx1fZQoaAZHQHDbzvd/J/5oB0vbaAhHQKEnVCVrylN1fZQoaAZHQHJK+Ml1KXhoB0vUaAhHQKEnWzyjHn51fZQoaAZHQFPSIikfs/poB0uMaAhHQKEnf8VHnU51fZQoaAZHQHF1j/lyR0VoB0vVaAhHQKEno9/SYw91fZQoaAZHQHFrMe0Xxe9oB0vXaAhHQKEoPAY51eV1fZQoaAZHQHN1VbaAWi1oB00kAWgIR0ChKExyGSIQdX2UKGgGR0Bwf78AJb+taAdL5WgIR0ChKGJtzjm0dX2UKGgGR0BwQJNnGsFMaAdL52gIR0ChKJA3cYZVdX2UKGgGR0BxFNOdoWYXaAdNGwFoCEdAoSiV01ZTynV9lChoBkdAcm9k6tDD0mgHS/xoCEdAoSi61gH/tXV9lChoBkdAdBSJcPe54GgHS81oCEdAoSjM/0NBnnV9lChoBkdAcbRkeIVM22gHS+toCEdAoSjR1FH8THV9lChoBkdAcGBVtXPqs2gHS8xoCEdAoSnbcsUZenV9lChoBkdAbxSpPRArx2gHS95oCEdAoSpIbIcR2HV9lChoBkdAclbCzTnaFmgHS/1oCEdAoSrTQRf4RHV9lChoBkdAcosfPX05EWgHS79oCEdAoSrzp9qk/XV9lChoBkdAcK1Ma0hNd2gHS/ZoCEdAoSuTUd7v5XV9lChoBkdAdBkISDh99mgHS+VoCEdAoSuUd5prUXV9lChoBkdAcQ3fVqesgmgHS+1oCEdAoSubi++M63V9lChoBkdAcdOO/+Kjz2gHS/doCEdAoSvp5zHS4XV9lChoBkdAcZpkvsZ5zGgHS8toCEdAoSvykl/pdXV9lChoBkdAciNplz2ex2gHS9BoCEdAoSweaa1CxHV9lChoBkdAcu0CXyAhCGgHS9toCEdAoSwmovSMLnV9lChoBkdAcJpeS0Sh8WgHS+xoCEdAoSwq53C9AXV9lChoBkdAcPtPgNwzcmgHS85oCEdAoSwoYk3S8nV9lChoBkdAcUEP2PDHfmgHS/hoCEdAoSxW+j/Mn3V9lChoBkdAc7yksBhhIGgHS/hoCEdAoSxjasZHeHV9lChoBkdAcegrk8zQ/2gHS+NoCEdAoS0huTA31nV9lChoBkdAbulm+TNdJWgHS+9oCEdAoS2Q6ySmqHV9lChoBkdAcCT5IYm9hGgHS+ZoCEdAoS35bt7a7HV9lChoBkdAcP8g2qDK5mgHS9FoCEdAoS5YDNhVl3V9lChoBkdAcIk5Fw1iv2gHS9NoCEdAoS5ewu/UOXV9lChoBkdAc3+NFjNILGgHTRMBaAhHQKEugiFj/dZ1fZQoaAZHQHEhW5lOGj9oB0veaAhHQKEuj6ZYxL11fZQoaAZHQHB0oku6ErZoB0vgaAhHQKEvKrPMSsd1fZQoaAZHQHJGqtLcsUZoB0vwaAhHQKEvMFN+LFZ1fZQoaAZHQHLycjZ+QU5oB0v2aAhHQKEvU2nbZe11fZQoaAZHQHNjDSw4bS9oB0v2aAhHQKEvjg7YChh1fZQoaAZHQHHMIKMNtqJoB00DAWgIR0ChL8NQTEiudX2UKGgGR0Bw+uUY8+zMaAdL+GgIR0ChL9OyNXHSdX2UKGgGR0Bxw7IvJzT4aAdL/GgIR0ChL/LKvFFVdX2UKGgGR0BzOTGQ0XP7aAdL1GgIR0ChMD+jM3ZPdX2UKGgGR0BwOLWZqmCRaAdNOQFoCEdAoTCVa4c3l3V9lChoBkdAb4nRIjGDMGgHS95oCEdAoTDi6jFhonV9lChoBkdAcuvALApKBmgHS+BoCEdAoTFfKZDzAnV9lChoBkdAbz6SU1Q662gHS9poCEdAoTGuZw4sE3V9lChoBkdAcQ3eNkvsaGgHS89oCEdAoTG24kNWl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:43dc4808703d0e8cc779724db744b8a3ae5f0a07d6d9cf2da670c428d7de6801
3
- size 146170
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19ae8ef9dde7d9ea7f04cf0d1ebb6fd8d165ef0d70461b4712f6cabeb3b3b0e7
3
+ size 146647
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12b7477d90>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12b7477e20>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12b7477eb0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12b7477f40>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f12b7484040>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f12b74840d0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12b7484160>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12b74841f0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f12b7484280>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12b7484310>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12b74843a0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12b7484430>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f12b74882c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 7000064,
25
- "_total_timesteps": 7000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1685962894953640154,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKb4jr0fZcW5cwhQOzcKHDj1nzG7ZfYDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -9.142857142929728e-06,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGBPkRzzVeMAWyUTegDjAF0lEdAvra4lu3tr3V9lChoBkdAYu3iQT238WgHTegDaAhHQL63/H6dlNF1fZQoaAZHQE22PFvQ4S9oB03oA2gIR0C+uT9wR5C4dX2UKGgGR0BhsfIEKVpsaAdN6ANoCEdAvrpWZBsyi3V9lChoBkdAYkZ+qBEroWgHTegDaAhHQL67ZRgqmTF1fZQoaAZHQGQmmlqJuVJoB03oA2gIR0C+vHXJYDDCdX2UKGgGR0Bjp9dJJ5E/aAdN6ANoCEdAvr2XeZXuE3V9lChoBkdAYcvnhbW3B2gHTegDaAhHQL6+voPkJa91fZQoaAZHQEJfMeOn2qVoB0t5aAhHQL6+2ddmg8N1fZQoaAZHQGMkMF+uvEFoB03oA2gIR0C+v/1rl/6PdX2UKGgGR0BiwAb6xgRcaAdN6ANoCEdAvsEmI9C/oXV9lChoBkdAZMTIGQjlgmgHTegDaAhHQL7CSz4k/r11fZQoaAZHQGJ4l98Z1mtoB03oA2gIR0C+w3XYHxBmdX2UKGgGR0BlDGn/DLr5aAdN6ANoCEdAvsSnY4ACGXV9lChoBkdAYdcMfA9FF2gHTegDaAhHQL7F2F9a2Wp1fZQoaAZHQGcTX6yjYZloB03oA2gIR0C+xxPLPldUdX2UKGgGR0BjLyMvRJEqaAdN6ANoCEdAvshBkbxVhnV9lChoBkdAZslPcBU70WgHTegDaAhHQL7JjU+9rXV1fZQoaAZHQGY4esxO+IxoB03oA2gIR0C+yshmbsnidX2UKGgGR0BhLdymygPFaAdN6ANoCEdAvsvrqmj0tnV9lChoBkdAaEPbrTpgTmgHTegDaAhHQL7NAlgMMJB1fZQoaAZHQGXqYWDYh+xoB03oA2gIR0C+ziarWAf/dX2UKGgGR0BgDnyEtdzGaAdN6ANoCEdAvs8vqB3A23V9lChoBkdAY9GRhc7hemgHTegDaAhHQL7QQKjSG8F1fZQoaAZHQGYtYL1EmY1oB03oA2gIR0C+0VIcaOxTdX2UKGgGR0BnkI5YHPeIaAdN6ANoCEdAvtJpCw8nu3V9lChoBkdATaTWCmMwUWgHS5doCEdAvtKIod+5OXV9lChoBkdAWPTd9Dx9X2gHS5NoCEdAvtKmpAD7qXV9lChoBkdAZ4hCMPz4DmgHTegDaAhHQL7TsMINVip1fZQoaAZHQGALUb1h9b5oB03oA2gIR0C+1Lm47Rv4dX2UKGgGR0Bmm/dM0xdqaAdN6ANoCEdAvtW937k4m3V9lChoBkdAYlBmV7hNumgHTegDaAhHQL7WwKcd5pt1fZQoaAZHQGNSk8aGYa5oB03oA2gIR0C+2AMiGFi8dX2UKGgGR0BlRF0A93bFaAdN6ANoCEdAvtlGee4Cp3V9lChoBkdATciV6eGwimgHS3toCEdAvtljQBxPwnV9lChoBkdAZL3solUp/mgHTegDaAhHQL7aj7fpD/l1fZQoaAZHQGPZgvUSZjRoB03oA2gIR0C+28A1rIo3dX2UKGgGR0BmEdHMEA5raAdN6ANoCEdAvtzqC2+fy3V9lChoBkdAZrTalDWsimgHTegDaAhHQL7d7jPOY6Z1fZQoaAZHQGMW0KArhBJoB03oA2gIR0C+3w+jqOcUdX2UKGgGR0BgQu+VTrE+aAdN6ANoCEdAvuBKQU5+6XV9lChoBkdAZBTtvXK8tmgHTegDaAhHQL7hdI1LrX11fZQoaAZHQDfjuw5eZ5RoB0uIaAhHQL7hnCHh0hh1fZQoaAZHQEFS+dsi0OVoB0uQaAhHQL7hxe54GEB1fZQoaAZHQGZ4XxnWattoB03oA2gIR0C+4t6GHpKSdX2UKGgGR0BlV6Kk2xY8aAdN6ANoCEdAvuPi8CgbqHV9lChoBkdAQYKIUJv5xmgHS1toCEdAvuP1SbYsd3V9lChoBkdAZNSoE0SAY2gHTegDaAhHQL7k/VLi++N1fZQoaAZHQGWeu8brC3xoB03oA2gIR0C+5gM5bQkYdX2UKGgGR0BfRqEvkBCEaAdN6ANoCEdAvucJRk3CK3V9lChoBkdAYprb4agmJGgHTegDaAhHQL7oE6DGtIV1fZQoaAZHQGM/tPxhDw9oB03oA2gIR0C+6V7Vz6rOdX2UKGgGR0BkOauhbnoxaAdN6ANoCEdAvuqqeBg/knV9lChoBkdAY3OYWLxZuGgHTegDaAhHQL7r8JyQxN91fZQoaAZHQGadys0YTCdoB03oA2gIR0C+7Sa2jO9ndX2UKGgGR0Bklb/dZaFFaAdN6ANoCEdAvu5/gflp5HV9lChoBkdAZArrcCYCyWgHTegDaAhHQL7vsM+NcW11fZQoaAZHQGYSTvRZ2ZBoB03oA2gIR0C+8O3P7el9dX2UKGgGR0Bkd65LAYYSaAdN6ANoCEdAvvI6irT6SHV9lChoBkdAIXxwhnrY5GgHS5hoCEdAvvJcDxLCenV9lChoBkdAXIuiHqNZNmgHTegDaAhHQL7znb0voNd1fZQoaAZHQGa/mUOd5IJoB03oA2gIR0C+9M+7L+xXdX2UKGgGR0BkfxNGmUGFaAdN6ANoCEdAvvXmM0gr6XV9lChoBkdAJ4Gmce8wpWgHS1xoCEdAvvX5WGRFJHV9lChoBkdAWoN2ll9SdmgHTegDaAhHQL73C35N47l1fZQoaAZHQFCH2dd3SrpoB0uJaAhHQL73KD/lyR11fZQoaAZHQGN+aQV9F4NoB03oA2gIR0C++FPnB+F2dX2UKGgGR0BfvMj3VTaTaAdN6ANoCEdAvvmcVoHs1XV9lChoBkdAZwWHCXQdCGgHTegDaAhHQL76tDkELYx1fZQoaAZHQD8r5DZ13dNoB0tpaAhHQL76ypBX0Xh1fZQoaAZHQGWdf3WWhRJoB03oA2gIR0C++94LofSydX2UKGgGR0BjDn1jAi3YaAdN6ANoCEdAvvz0m/nGKnV9lChoBkdAY7UUB4lhPWgHTegDaAhHQL7+E3yZrpJ1fZQoaAZHQGMg8LronrpoB03oA2gIR0C+/yn+hoM8dX2UKGgGR0BjLwlF+d9VaAdN6ANoCEdAvwBATM7lrHV9lChoBkdAZF4lgMMI/2gHTegDaAhHQL8BXn7Hhjx1fZQoaAZHQGKti2+fywxoB03oA2gIR0C/Aohe1KGtdX2UKGgGR0BRGM1baAWjaAdN6ANoCEdAvwOwQCjk/HV9lChoBkdAZK35ZbILgGgHTegDaAhHQL8E1hiLEUF1fZQoaAZHQGHXRsdkrgBoB03oA2gIR0C/BfvTLGJfdX2UKGgGR0Bl/LpFCswMaAdN6ANoCEdAvwcinyd4FHV9lChoBkfAa3ZCQcPvrmgHTeYBaAhHQL8H0yAQQMB1fZQoaAZHQGIl4ffXPJJoB03oA2gIR0C/CPfoV2zOdX2UKGgGR8BjWa2BreqJaAdN7AFoCEdAvwlo5hjOLXV9lChoBkdAYu0NaQmu1WgHTegDaAhHQL8Kkn+Q2dd1fZQoaAZHQGA5U+s5n15oB03oA2gIR0C/C675Ec81dX2UKGgGR0BhbtLrX18LaAdN6ANoCEdAvwy9lpXZG3V9lChoBkdAYy4DTSb6QGgHTegDaAhHQL8N1zGgi/x1fZQoaAZHQGYjMKsuFpRoB03oA2gIR0C/Dv2CAc1gdX2UKGgGR0BAfn1OCXhPaAdLVGgIR0C/DxDEm6XjdX2UKGgGR0BlKebXpW3jaAdN6ANoCEdAvxBASkCV8nV9lChoBkdAY2PUlzEJjWgHTegDaAhHQL8RlzPrv9d1fZQoaAZHQGcFehPCVKRoB03oA2gIR0C/ErkzsQd0dX2UKGgGR0BRzSylenhsaAdN6ANoCEdAvxPa/ATIvXV9lChoBkdAYp9bfxc3VGgHTegDaAhHQL8VAxXnyNJ1fZQoaAZHQFpijt5UtI1oB03oA2gIR0C/FimdupCKdX2UKGgGR0BjOPHPu5SWaAdN6ANoCEdAvxdM2Jiy6nV9lChoBkdAVUonb7CSBGgHS41oCEdAvxdsnb7CSHV9lChoBkdADKCvovBacWgHS1xoCEdAvxeBOqNp/XV9lChoBkdAYPgBwuM+/2gHTegDaAhHQL8Yo/9Hc1x1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 27344,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,24 +76,24 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 1,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.97,
83
- "ent_coef": 0.1,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL2RpdHJpcC9hbmFjb25kYTMvZW52cy9teS1lbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9kaXRyaXAvYW5hY29uZGEzL2VudnMvbXktZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21b9512050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21b95120e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21b9512170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21b9512200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f21b9512290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f21b9512320>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21b95123b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21b9512440>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f21b95124d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21b9512560>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21b95125f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21b9512680>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f21b950f480>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1686994328762176983,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM1hTyPnlO6Erk5tPMgGC5e+Uu7X32XMwAAgD8AAIA/gPMgvh4dez9SAKq9hRcNv8jCRb59G/E9AAAAAAAAAAAA47A9gSETP27wObyycPu+MnuwPPdVkr0AAAAAAAAAAICeVj1Acak/C1M5P9D1Ib87Jra87EhHPQAAAAAAAAAAAKUtvTyn9z4yge891cCmvg1bPjvTMLA9AAAAAAAAAADA6IA9u9GtP6rlKz82Xry+1nglvCc4wT0AAAAAAAAAAM3ijb2EdCU+m4E/Pn78hL7ev6U9jWc9uwAAAAAAAAAAQEELvncTPT51S0o+XSJ7vj8/tz29zU29AAAAAAAAAADmMg4+Q/WFP4Wo6T7r9DG/r5d6PjYOIj4AAAAAAAAAAPPruz3Xgyc8JlCJvrY7br6U96+9Um1IPAAAAAAAAAAAmrAnPjnUhD4e9hK/5TpmvrKadr30aY++AAAAAAAAAAAze4A8w+kzuqjeeb0734O0OcjFOTDL/jMAAIA/AACAPxoLZD3fX1g+DTFUvs+Xbb781jS9AhxkvQAAAAAAAAAAAHzUvaqZez7+1o4+lZ6EvvXWIz6+n4E8AAAAAAAAAABjZ5S+JMo/vRIj1LozRqq5BcCqPqvvEzoAAIA/AACAP2b4BrzhSKi6L/wQtOY/TC9UC6k51biTMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/1cqe9SMuMAWyUS9aMAXSUR0ChD6Os90RwdX2UKGgGR0BxKZet0V8DaAdL9mgIR0ChD93UhFEzdX2UKGgGR0BwnmJ+DvmYaAdL52gIR0ChEBp6Y3NtdX2UKGgGR0Bzcmo73fygaAdNCAFoCEdAoRBdyxRl6XV9lChoBkdAciuKrJbMYGgHS+ZoCEdAoRDRDNQj2XV9lChoBkdAcTqzO5avBGgHS/ZoCEdAoRDhUzbeuXV9lChoBkdAbujKOktVaWgHS+loCEdAoRF5f6XSjXV9lChoBkdAb2yO4G2TgWgHS9doCEdAoRF5d+ocaXV9lChoBkdAcFkemelKsmgHS+poCEdAoRGMafjCHnV9lChoBkdAcCLpKBd2PmgHS+toCEdAoRGyWZ7Xx3V9lChoBkdAcDCuDBdld2gHS+NoCEdAoRG5wn6VMXV9lChoBkdAcs5aWX1J2GgHS+RoCEdAoRHQKjSG8HV9lChoBkdAcbsys0YTCmgHS+poCEdAoRHwhbGFSXV9lChoBkdAb9Vog3cYZWgHTQEBaAhHQKER/A1vVEx1fZQoaAZHQHEFUnTiKixoB0vqaAhHQKESCuXeFcp1fZQoaAZHQHDeaa1Cw8poB0vUaAhHQKESbYcNpdt1fZQoaAZHQHKd14LThHdoB0vwaAhHQKES+mOU+s51fZQoaAZHQHEBA3HaN+9oB00TAWgIR0ChEx4ACGN8dX2UKGgGR0A/gcW0qpcYaAdLwGgIR0ChE0utnwocdX2UKGgGR0Bu/04T9KmLaAdL6GgIR0ChE2T6i0v5dX2UKGgGR0ByQL0rbxmTaAdNBQFoCEdAoROElme18nV9lChoBkdAcIygkka/AWgHS+FoCEdAoRSDyxzJZHV9lChoBkdAcBGt/nW8RWgHS/FoCEdAoRSzb8FY+3V9lChoBkdAbWoZ2IO6NGgHS9JoCEdAoRTJG+bmVHV9lChoBkdAcGbhoduHe2gHS+5oCEdAoRTpgTh5xHV9lChoBkdAcksIvJzT4WgHS/9oCEdAoRTpKlHjInV9lChoBkdAc17O1v2oN2gHTTUBaAhHQKEVGR9PUKB1fZQoaAZHQHCDVY6nzhBoB00EAWgIR0ChFTG+9Jz1dX2UKGgGR0Bx7eHARChOaAdL82gIR0ChFTMijcmCdX2UKGgGR0ByKFeIEbHZaAdL0mgIR0ChFVS9du50dX2UKGgGR0Bxa+VTrE9/aAdNEgFoCEdAoRV4vexfOXV9lChoBkdAcJA3trsSkGgHS9NoCEdAoR/19YwIt3V9lChoBkdAcS9JpFkQPWgHTTIBaAhHQKEgE6+WWyF1fZQoaAZHQG8ce8wpON5oB0vVaAhHQKEgaYNRWLh1fZQoaAZHQHAndRrJr+JoB0vtaAhHQKEgbhb4agp1fZQoaAZHQHIKHMQmNR5oB0vmaAhHQKEhCgB91EF1fZQoaAZHQHPTGeYlY2doB00eAWgIR0ChIhTIV/MGdX2UKGgGR0Bx7WrT6SDAaAdL0GgIR0ChIqdUS7GvdX2UKGgGR0BxuMLkS26TaAdL7GgIR0ChIrsmnfl7dX2UKGgGR0BxDBa/yoXLaAdL4mgIR0ChIsKtxMnJdX2UKGgGR0ByKgytV7x/aAdL22gIR0ChIunvMKTjdX2UKGgGR0Burz8pCrtFaAdL8GgIR0ChIysf7rLRdX2UKGgGR0Byv0JC0F8paAdL12gIR0ChI4GpEQXidX2UKGgGR0By0BbwBo25aAdL52gIR0ChI5s4tHx0dX2UKGgGR0BzPysKb8WLaAdL72gIR0ChI8I9LYf5dX2UKGgGR0Bxa4fms/6gaAdL9mgIR0ChI8KT0QK8dX2UKGgGR0Byup29tdiVaAdL4WgIR0ChI+zK9wm3dX2UKGgGR0BwxLEUCaJAaAdL0WgIR0ChJHqj8DSxdX2UKGgGR0BO/h3Roh6jaAdLwWgIR0ChJHs7lq8EdX2UKGgGR0BxNI052hZhaAdNCgFoCEdAoSW6emNzbXV9lChoBkdAcBwizLOiWWgHS91oCEdAoSW7Aaef7XV9lChoBkdAcSopCrtE5WgHTQABaAhHQKElxi6xxDN1fZQoaAZHQHDyiBoVVPxoB0vQaAhHQKEnFozvZyx1fZQoaAZHQHDbzvd/J/5oB0vbaAhHQKEnVCVrylN1fZQoaAZHQHJK+Ml1KXhoB0vUaAhHQKEnWzyjHn51fZQoaAZHQFPSIikfs/poB0uMaAhHQKEnf8VHnU51fZQoaAZHQHF1j/lyR0VoB0vVaAhHQKEno9/SYw91fZQoaAZHQHFrMe0Xxe9oB0vXaAhHQKEoPAY51eV1fZQoaAZHQHN1VbaAWi1oB00kAWgIR0ChKExyGSIQdX2UKGgGR0Bwf78AJb+taAdL5WgIR0ChKGJtzjm0dX2UKGgGR0BwQJNnGsFMaAdL52gIR0ChKJA3cYZVdX2UKGgGR0BxFNOdoWYXaAdNGwFoCEdAoSiV01ZTynV9lChoBkdAcm9k6tDD0mgHS/xoCEdAoSi61gH/tXV9lChoBkdAdBSJcPe54GgHS81oCEdAoSjM/0NBnnV9lChoBkdAcbRkeIVM22gHS+toCEdAoSjR1FH8THV9lChoBkdAcGBVtXPqs2gHS8xoCEdAoSnbcsUZenV9lChoBkdAbxSpPRArx2gHS95oCEdAoSpIbIcR2HV9lChoBkdAclbCzTnaFmgHS/1oCEdAoSrTQRf4RHV9lChoBkdAcosfPX05EWgHS79oCEdAoSrzp9qk/XV9lChoBkdAcK1Ma0hNd2gHS/ZoCEdAoSuTUd7v5XV9lChoBkdAdBkISDh99mgHS+VoCEdAoSuUd5prUXV9lChoBkdAcQ3fVqesgmgHS+1oCEdAoSubi++M63V9lChoBkdAcdOO/+Kjz2gHS/doCEdAoSvp5zHS4XV9lChoBkdAcZpkvsZ5zGgHS8toCEdAoSvykl/pdXV9lChoBkdAciNplz2ex2gHS9BoCEdAoSweaa1CxHV9lChoBkdAcu0CXyAhCGgHS9toCEdAoSwmovSMLnV9lChoBkdAcJpeS0Sh8WgHS+xoCEdAoSwq53C9AXV9lChoBkdAcPtPgNwzcmgHS85oCEdAoSwoYk3S8nV9lChoBkdAcUEP2PDHfmgHS/hoCEdAoSxW+j/Mn3V9lChoBkdAc7yksBhhIGgHS/hoCEdAoSxjasZHeHV9lChoBkdAcegrk8zQ/2gHS+NoCEdAoS0huTA31nV9lChoBkdAbulm+TNdJWgHS+9oCEdAoS2Q6ySmqHV9lChoBkdAcCT5IYm9hGgHS+ZoCEdAoS35bt7a7HV9lChoBkdAcP8g2qDK5mgHS9FoCEdAoS5YDNhVl3V9lChoBkdAcIk5Fw1iv2gHS9NoCEdAoS5ewu/UOXV9lChoBkdAc3+NFjNILGgHTRMBaAhHQKEugiFj/dZ1fZQoaAZHQHEhW5lOGj9oB0veaAhHQKEuj6ZYxL11fZQoaAZHQHB0oku6ErZoB0vgaAhHQKEvKrPMSsd1fZQoaAZHQHJGqtLcsUZoB0vwaAhHQKEvMFN+LFZ1fZQoaAZHQHLycjZ+QU5oB0v2aAhHQKEvU2nbZe11fZQoaAZHQHNjDSw4bS9oB0v2aAhHQKEvjg7YChh1fZQoaAZHQHHMIKMNtqJoB00DAWgIR0ChL8NQTEiudX2UKGgGR0Bw+uUY8+zMaAdL+GgIR0ChL9OyNXHSdX2UKGgGR0Bxw7IvJzT4aAdL/GgIR0ChL/LKvFFVdX2UKGgGR0BzOTGQ0XP7aAdL1GgIR0ChMD+jM3ZPdX2UKGgGR0BwOLWZqmCRaAdNOQFoCEdAoTCVa4c3l3V9lChoBkdAb4nRIjGDMGgHS95oCEdAoTDi6jFhonV9lChoBkdAcuvALApKBmgHS+BoCEdAoTFfKZDzAnV9lChoBkdAbz6SU1Q662gHS9poCEdAoTGuZw4sE3V9lChoBkdAcQ3eNkvsaGgHS89oCEdAoTG24kNWl3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eaf84bc580c5553fab3706d618a7a9a7d66ace9fce0c41dfa8fd4050b952ba1a
3
- size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bad823947480be85b751617e3463aec47aafd97c7e9165c8ecbb05e9db3f9a3
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7db780ec38550dfe5f08ca3429b9997e63125853099f247ca6dcec073098094
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d94ebfd8f37d975caec518985e6ea6244b7b29061f2cd66a91ebd29d45108ba5
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.0-73-generic-x86_64-with-glibc2.31 # 80~20.04.1-Ubuntu SMP Wed May 17 14:58:14 UTC 2023
2
- - Python: 3.10.8
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 1.12.1.post201
5
  - GPU Enabled: True
6
- - Numpy: 1.23.3
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
- - OpenAI Gym: 0.26.2
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 130.35308460000002, "std_reward": 42.023906320183116, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T16:14:41.929397"}
 
1
+ {"mean_reward": 272.13865952740855, "std_reward": 12.853026806345293, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T10:09:26.148618"}