|
from torch import nn |
|
import torch |
|
import torch.nn.functional as F |
|
from models.util import Hourglass, make_coordinate_grid, AntiAliasInterpolation2d |
|
|
|
|
|
|
|
class KPDetector(nn.Module): |
|
""" |
|
Detecting a keypoints. Return keypoint position and jacobian near each keypoint. |
|
""" |
|
|
|
def __init__(self, block_expansion, num_kp, num_channels, max_features, |
|
num_blocks, temperature, estimate_jacobian=False, scale_factor=1, |
|
single_jacobian_map=False, pad=0): |
|
super(KPDetector, self).__init__() |
|
|
|
self.predictor = Hourglass(block_expansion, in_features=num_channels, |
|
max_features=max_features, num_blocks=num_blocks) |
|
|
|
self.kp = nn.Conv2d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=(7, 7), |
|
padding=pad) |
|
|
|
if estimate_jacobian: |
|
self.num_jacobian_maps = 1 if single_jacobian_map else num_kp |
|
self.jacobian = nn.Conv2d(in_channels=self.predictor.out_filters, |
|
out_channels=4 * self.num_jacobian_maps, kernel_size=(7, 7), padding=pad) |
|
self.jacobian.weight.data.zero_() |
|
self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float)) |
|
else: |
|
self.jacobian = None |
|
|
|
self.temperature = temperature |
|
self.scale_factor = scale_factor |
|
if self.scale_factor != 1: |
|
self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor) |
|
|
|
def gaussian2kp(self, heatmap): |
|
""" |
|
Extract the mean and from a heatmap |
|
""" |
|
shape = heatmap.shape |
|
heatmap = heatmap.unsqueeze(-1) |
|
grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0) |
|
value = (heatmap * grid).sum(dim=(2, 3)) |
|
kp = {'value': value} |
|
|
|
return kp |
|
|
|
def forward(self, x,with_feature = False): |
|
if self.scale_factor != 1: |
|
x = self.down(x) |
|
|
|
feature_map = self.predictor(x) |
|
prediction = self.kp(feature_map) |
|
final_shape = prediction.shape |
|
heatmap = prediction.view(final_shape[0], final_shape[1], -1) |
|
heatmap = F.softmax(heatmap / self.temperature, dim=2) |
|
heatmap = heatmap.view(*final_shape) |
|
|
|
out = self.gaussian2kp(heatmap) |
|
|
|
if self.jacobian is not None: |
|
jacobian_map = self.jacobian(feature_map) |
|
out["jacobian_map"] = jacobian_map |
|
|
|
jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 4, final_shape[2], |
|
final_shape[3]) |
|
|
|
heatmap = heatmap.unsqueeze(2) |
|
|
|
jacobian = heatmap * jacobian_map |
|
jacobian = jacobian.view(final_shape[0], final_shape[1], 4, -1) |
|
jacobian = jacobian.sum(dim=-1) |
|
jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 2, 2) |
|
out['jacobian'] = jacobian |
|
out["pred_feature"] = prediction |
|
if with_feature: |
|
out["feature_map"] = feature_map |
|
return out |
|
|