File size: 2,338 Bytes
6625f87 6bddd01 6625f87 6bddd01 6625f87 6bddd01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- ru
license: apache-2.0
---
# Model DmitryPogrebnoy/MedRuBertTiny2
# Model Description
This model is fine-tuned version
of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)
.
The code for the fine-tuned process can be
found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_rubert_tiny2/fine_tune_rubert_tiny2.py)
.
The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian.
The collected dataset can be
found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv).
This model was created as part of a master's project to develop a method for correcting typos
in medical histories using BERT models as a ranking of candidates.
The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker).
# How to Get Started With the Model
You can use the model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedRuBertTiny2')
>>> pipeline("У пациента [MASK] боль в грудине.")
[{'score': 0.4527082145214081,
'token': 29626,
'token_str': 'боль',
'sequence': 'У пациента боль боль в грудине.'},
{'score': 0.05768931284546852,
'token': 46275,
'token_str': 'головной',
'sequence': 'У пациента головной боль в грудине.'},
{'score': 0.02957102842628956,
'token': 4674,
'token_str': 'есть',
'sequence': 'У пациента есть боль в грудине.'},
{'score': 0.02168550342321396,
'token': 10030,
'token_str': 'нет',
'sequence': 'У пациента нет боль в грудине.'},
{'score': 0.02051634155213833,
'token': 60730,
'token_str': 'болит',
'sequence': 'У пациента болит боль в грудине.'}]
```
Or you can load the model and tokenizer and do what you need to do:
```python
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedRuBertTiny2")
>>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedRuBertTiny2")
```
|