Dnsx077 commited on
Commit
3279031
·
verified ·
1 Parent(s): 4b5211c

End of training

Browse files
Files changed (2) hide show
  1. README.md +155 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.2
4
+ base_model: NousResearch/Llama-3.2-1B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: f243e3fe-664f-4366-8922-5c6792387227
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Llama-3.2-1B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 1282829318c3f780_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/1282829318c3f780_train_data.json
32
+ type:
33
+ field_input: input
34
+ field_instruction: instruction
35
+ field_output: output
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: 1
43
+ eval_max_new_tokens: 128
44
+ eval_steps: 25
45
+ eval_table_size: null
46
+ flash_attention: false
47
+ fp16: false
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 4
51
+ gradient_checkpointing: true
52
+ group_by_length: true
53
+ hub_model_id: Dnsx077/f243e3fe-664f-4366-8922-5c6792387227
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0002
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 32
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 16
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_memory:
70
+ 0: 70GB
71
+ max_steps: 50
72
+ micro_batch_size: 2
73
+ mlflow_experiment_name: /tmp/1282829318c3f780_train_data.json
74
+ model_type: AutoModelForCausalLM
75
+ num_epochs: 3
76
+ optimizer: adamw_torch
77
+ output_dir: miner_id_24
78
+ pad_to_sequence_len: true
79
+ resume_from_checkpoint: null
80
+ s2_attention: null
81
+ sample_packing: false
82
+ save_steps: 25
83
+ sequence_len: 4056
84
+ special_tokens:
85
+ pad_token: <|end_of_text|>
86
+ strict: false
87
+ tf32: false
88
+ tokenizer_type: AutoTokenizer
89
+ train_on_inputs: false
90
+ trust_remote_code: true
91
+ val_set_size: 0.05
92
+ wandb_entity: taoxminer-education
93
+ wandb_mode: online
94
+ wandb_name: f243e3fe-664f-4366-8922-5c6792387227
95
+ wandb_project: Gradients-On-Demand
96
+ wandb_run: taoxminer
97
+ wandb_runid: f243e3fe-664f-4366-8922-5c6792387227
98
+ warmup_ratio: 0.05
99
+ weight_decay: 0.01
100
+ xformers_attention: true
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # f243e3fe-664f-4366-8922-5c6792387227
107
+
108
+ This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 2.4238
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - gradient_accumulation_steps: 4
134
+ - total_train_batch_size: 8
135
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 2
138
+ - training_steps: 50
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 2.1044 | 0.0002 | 1 | 2.8170 |
145
+ | 2.2299 | 0.0061 | 25 | 2.5090 |
146
+ | 2.6087 | 0.0122 | 50 | 2.4238 |
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - PEFT 0.13.2
152
+ - Transformers 4.46.0
153
+ - Pytorch 2.5.0+cu124
154
+ - Datasets 3.0.1
155
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b2046524c146bd47447c3eeee6259f61cb22d15c950a3a64d8daa3a89df2680
3
+ size 45169354