Text Generation
Transformers
English
llama
Generated from Trainer
8-bit precision
bitsandbytes
Doctor-Shotgun commited on
Commit
7831acd
1 Parent(s): 2e15cd1

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: no-robots-lora-out
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
13
+ # no-robots-lora-out
14
+
15
+ This model was trained from scratch on the None dataset.
16
+
17
+ ## Model description
18
+
19
+ More information needed
20
+
21
+ ## Intended uses & limitations
22
+
23
+ More information needed
24
+
25
+ ## Training and evaluation data
26
+
27
+ More information needed
28
+
29
+ ## Training procedure
30
+
31
+ ### Training hyperparameters
32
+
33
+ The following hyperparameters were used during training:
34
+ - learning_rate: 8e-05
35
+ - train_batch_size: 2
36
+ - eval_batch_size: 2
37
+ - seed: 42
38
+ - gradient_accumulation_steps: 4
39
+ - total_train_batch_size: 8
40
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
+ - lr_scheduler_type: cosine
42
+ - lr_scheduler_warmup_steps: 10
43
+ - num_epochs: 3
44
+
45
+ ### Training results
46
+
47
+
48
+
49
+ ### Framework versions
50
+
51
+ - Transformers 4.34.1
52
+ - Pytorch 2.0.1+cu118
53
+ - Datasets 2.14.6
54
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/yi-llama-34b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "gate_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b9f828e31069b372aa184066b0661798bc4ba13e56d7db23f5300739bb1f1bc
3
+ size 491823213
checkpoint-105/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./models/yi-llama-34b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
checkpoint-105/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/yi-llama-34b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "gate_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-105/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce5e60455563a45889ec19644d8e4d7978615f2a0a3c082f5e84ea001d137bac
3
+ size 491823213
checkpoint-105/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10a17db8d9ed9ec8a19458f7a7ba07d28c69d4107ec42e8f02565fc5d27e9e15
3
+ size 247180991
checkpoint-105/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:972e2e356378ffe17716db78aae6262916bdeba2700e4797820b2c899b65d67f
3
+ size 14575
checkpoint-105/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40d84e0f63f22cfabcac3296801d9abb403412a2ba8aec78f2ca47342b791f84
3
+ size 627
checkpoint-105/trainer_state.json ADDED
@@ -0,0 +1,649 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0169491525423728,
5
+ "eval_steps": 500,
6
+ "global_step": 105,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 8.000000000000001e-06,
14
+ "loss": 1.6073,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 1.6000000000000003e-05,
20
+ "loss": 1.701,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 2.4e-05,
26
+ "loss": 1.6232,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 3.2000000000000005e-05,
32
+ "loss": 1.705,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 4e-05,
38
+ "loss": 1.6552,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 4.8e-05,
44
+ "loss": 1.7611,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 5.6e-05,
50
+ "loss": 1.6008,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 6.400000000000001e-05,
56
+ "loss": 1.6468,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.09,
61
+ "learning_rate": 7.2e-05,
62
+ "loss": 1.6148,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.1,
67
+ "learning_rate": 8e-05,
68
+ "loss": 1.6125,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.11,
73
+ "learning_rate": 7.999779207981935e-05,
74
+ "loss": 1.6532,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.12,
79
+ "learning_rate": 7.999116856302298e-05,
80
+ "loss": 1.528,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.13,
85
+ "learning_rate": 7.998013018082072e-05,
86
+ "loss": 1.5758,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.14,
91
+ "learning_rate": 7.996467815180588e-05,
92
+ "loss": 1.6549,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.15,
97
+ "learning_rate": 7.994481418182082e-05,
98
+ "loss": 1.3725,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.15,
103
+ "learning_rate": 7.992054046376854e-05,
104
+ "loss": 1.6324,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.16,
109
+ "learning_rate": 7.989185967737066e-05,
110
+ "loss": 1.5984,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.17,
115
+ "learning_rate": 7.985877498887149e-05,
116
+ "loss": 1.7095,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.18,
121
+ "learning_rate": 7.982129005068865e-05,
122
+ "loss": 1.4843,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.19,
127
+ "learning_rate": 7.977940900100967e-05,
128
+ "loss": 1.6701,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "learning_rate": 7.973313646333532e-05,
134
+ "loss": 1.6216,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.21,
139
+ "learning_rate": 7.968247754596908e-05,
140
+ "loss": 1.6616,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.22,
145
+ "learning_rate": 7.962743784145323e-05,
146
+ "loss": 1.5737,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.23,
151
+ "learning_rate": 7.956802342595152e-05,
152
+ "loss": 1.5716,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.24,
157
+ "learning_rate": 7.950424085857827e-05,
158
+ "loss": 1.4727,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.25,
163
+ "learning_rate": 7.943609718067437e-05,
164
+ "loss": 1.676,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.26,
169
+ "learning_rate": 7.936359991502993e-05,
170
+ "loss": 1.5953,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.27,
175
+ "learning_rate": 7.92867570650537e-05,
176
+ "loss": 1.5233,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.28,
181
+ "learning_rate": 7.920557711388967e-05,
182
+ "loss": 1.7087,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.29,
187
+ "learning_rate": 7.912006902348045e-05,
188
+ "loss": 1.6314,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.3,
193
+ "learning_rate": 7.903024223357797e-05,
194
+ "loss": 1.5763,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.31,
199
+ "learning_rate": 7.893610666070134e-05,
200
+ "loss": 1.7077,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.32,
205
+ "learning_rate": 7.883767269704209e-05,
206
+ "loss": 1.5335,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.33,
211
+ "learning_rate": 7.873495120931697e-05,
212
+ "loss": 1.6053,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.34,
217
+ "learning_rate": 7.86279535375683e-05,
218
+ "loss": 1.3602,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.35,
223
+ "learning_rate": 7.851669149391198e-05,
224
+ "loss": 1.3493,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.36,
229
+ "learning_rate": 7.84011773612336e-05,
230
+ "loss": 1.5459,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.37,
235
+ "learning_rate": 7.828142389183239e-05,
236
+ "loss": 1.5918,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.38,
241
+ "learning_rate": 7.815744430601344e-05,
242
+ "loss": 1.4649,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.39,
247
+ "learning_rate": 7.802925229062823e-05,
248
+ "loss": 1.5555,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.4,
253
+ "learning_rate": 7.789686199756365e-05,
254
+ "loss": 1.6162,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.41,
259
+ "learning_rate": 7.776028804217968e-05,
260
+ "loss": 1.5508,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.42,
265
+ "learning_rate": 7.761954550169593e-05,
266
+ "loss": 1.7089,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.43,
271
+ "learning_rate": 7.74746499135272e-05,
272
+ "loss": 1.6471,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.44,
277
+ "learning_rate": 7.732561727356811e-05,
278
+ "loss": 1.5361,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.45,
283
+ "learning_rate": 7.717246403442735e-05,
284
+ "loss": 1.4333,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.46,
289
+ "learning_rate": 7.701520710361129e-05,
290
+ "loss": 1.5406,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.46,
295
+ "learning_rate": 7.685386384165748e-05,
296
+ "loss": 1.6056,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.47,
301
+ "learning_rate": 7.668845206021812e-05,
302
+ "loss": 1.5945,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.48,
307
+ "learning_rate": 7.651899002009375e-05,
308
+ "loss": 1.6727,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.49,
313
+ "learning_rate": 7.634549642921725e-05,
314
+ "loss": 1.6352,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.5,
319
+ "learning_rate": 7.616799044058867e-05,
320
+ "loss": 1.5127,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.51,
325
+ "learning_rate": 7.598649165016073e-05,
326
+ "loss": 1.5696,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.52,
331
+ "learning_rate": 7.58010200946755e-05,
332
+ "loss": 1.5987,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.53,
337
+ "learning_rate": 7.561159624945257e-05,
338
+ "loss": 1.5007,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.54,
343
+ "learning_rate": 7.541824102612839e-05,
344
+ "loss": 1.697,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.55,
349
+ "learning_rate": 7.5220975770348e-05,
350
+ "loss": 1.5062,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.56,
355
+ "learning_rate": 7.501982225940833e-05,
356
+ "loss": 1.6713,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.57,
361
+ "learning_rate": 7.48148026998542e-05,
362
+ "loss": 1.5913,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.58,
367
+ "learning_rate": 7.460593972502674e-05,
368
+ "loss": 1.5841,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.59,
373
+ "learning_rate": 7.439325639256483e-05,
374
+ "loss": 1.5459,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.6,
379
+ "learning_rate": 7.417677618185955e-05,
380
+ "loss": 1.5911,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.61,
385
+ "learning_rate": 7.39565229914622e-05,
386
+ "loss": 1.5862,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.62,
391
+ "learning_rate": 7.373252113644596e-05,
392
+ "loss": 1.6381,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.63,
397
+ "learning_rate": 7.350479534572166e-05,
398
+ "loss": 1.5476,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.64,
403
+ "learning_rate": 7.327337075930775e-05,
404
+ "loss": 1.579,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.65,
409
+ "learning_rate": 7.303827292555495e-05,
410
+ "loss": 1.6105,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.66,
415
+ "learning_rate": 7.279952779832584e-05,
416
+ "loss": 1.5728,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.67,
421
+ "learning_rate": 7.255716173412966e-05,
422
+ "loss": 1.6509,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.68,
427
+ "learning_rate": 7.23112014892126e-05,
428
+ "loss": 1.5586,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.69,
433
+ "learning_rate": 7.20616742166041e-05,
434
+ "loss": 1.3865,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.7,
439
+ "learning_rate": 7.180860746311917e-05,
440
+ "loss": 1.5214,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.71,
445
+ "learning_rate": 7.155202916631743e-05,
446
+ "loss": 1.5699,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.72,
451
+ "learning_rate": 7.129196765141886e-05,
452
+ "loss": 1.388,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.73,
457
+ "learning_rate": 7.10284516281768e-05,
458
+ "loss": 1.5735,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.74,
463
+ "learning_rate": 7.076151018770854e-05,
464
+ "loss": 1.6245,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.75,
469
+ "learning_rate": 7.049117279928374e-05,
470
+ "loss": 1.6489,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.76,
475
+ "learning_rate": 7.021746930707117e-05,
476
+ "loss": 1.5712,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.77,
481
+ "learning_rate": 6.994042992684406e-05,
482
+ "loss": 1.6359,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.77,
487
+ "learning_rate": 6.966008524264429e-05,
488
+ "loss": 1.6452,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.78,
493
+ "learning_rate": 6.937646620340618e-05,
494
+ "loss": 1.5655,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.79,
499
+ "learning_rate": 6.908960411953973e-05,
500
+ "loss": 1.5791,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.8,
505
+ "learning_rate": 6.879953065947416e-05,
506
+ "loss": 1.685,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.81,
511
+ "learning_rate": 6.850627784616178e-05,
512
+ "loss": 1.5755,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.82,
517
+ "learning_rate": 6.82098780535428e-05,
518
+ "loss": 1.5878,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.83,
523
+ "learning_rate": 6.791036400297142e-05,
524
+ "loss": 1.6273,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.84,
529
+ "learning_rate": 6.760776875960347e-05,
530
+ "loss": 1.625,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.85,
535
+ "learning_rate": 6.730212572874618e-05,
536
+ "loss": 1.6891,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.86,
541
+ "learning_rate": 6.699346865217031e-05,
542
+ "loss": 1.5593,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.87,
547
+ "learning_rate": 6.668183160438531e-05,
548
+ "loss": 1.6518,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.88,
553
+ "learning_rate": 6.636724898887751e-05,
554
+ "loss": 1.6314,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.89,
559
+ "learning_rate": 6.604975553431219e-05,
560
+ "loss": 1.6267,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.9,
565
+ "learning_rate": 6.572938629069959e-05,
566
+ "loss": 1.5465,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.91,
571
+ "learning_rate": 6.540617662552565e-05,
572
+ "loss": 1.6302,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.92,
577
+ "learning_rate": 6.508016221984747e-05,
578
+ "loss": 1.5039,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.93,
583
+ "learning_rate": 6.475137906435435e-05,
584
+ "loss": 1.6879,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.94,
589
+ "learning_rate": 6.441986345539446e-05,
590
+ "loss": 1.5822,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.95,
595
+ "learning_rate": 6.408565199096798e-05,
596
+ "loss": 1.5612,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.96,
601
+ "learning_rate": 6.374878156668676e-05,
602
+ "loss": 1.6022,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.97,
607
+ "learning_rate": 6.340928937170118e-05,
608
+ "loss": 1.6292,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.98,
613
+ "learning_rate": 6.30672128845947e-05,
614
+ "loss": 1.6783,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.99,
619
+ "learning_rate": 6.272258986924624e-05,
620
+ "loss": 1.5995,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.0,
625
+ "learning_rate": 6.237545837066133e-05,
626
+ "loss": 1.5811,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.01,
631
+ "learning_rate": 6.202585671077204e-05,
632
+ "loss": 1.5029,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.02,
637
+ "learning_rate": 6.167382348420637e-05,
638
+ "loss": 1.5067,
639
+ "step": 105
640
+ }
641
+ ],
642
+ "logging_steps": 1,
643
+ "max_steps": 309,
644
+ "num_train_epochs": 3,
645
+ "save_steps": 500,
646
+ "total_flos": 7.038225052524872e+17,
647
+ "trial_name": null,
648
+ "trial_params": null
649
+ }
checkpoint-105/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bedb4a76f95d260ade08f85bd50a2cddf7cfed301c3af564dd88bf3b862017b1
3
+ size 4539
checkpoint-210/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./models/yi-llama-34b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
checkpoint-210/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/yi-llama-34b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "gate_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-210/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb8e9924ef8005c07d97a5b198a9f7194cc748fe54b01f54acbf636bc6c98e8e
3
+ size 491823213
checkpoint-210/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e713ce40758fe67f7c814fd944134cd539c4e0b8b535e6ec5d9f558299a3e952
3
+ size 247180991
checkpoint-210/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:033c1713667299e0b98baa73fe7a4370d4517d4bb48c2ca0b27dca78ec04d345
3
+ size 14575
checkpoint-210/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1417dde75936bdd43d6514ba42ea88a198d097387506bfd0b591ec34263025a8
3
+ size 627
checkpoint-210/trainer_state.json ADDED
@@ -0,0 +1,1279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0145278450363193,
5
+ "eval_steps": 500,
6
+ "global_step": 210,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 8.000000000000001e-06,
14
+ "loss": 1.6073,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 1.6000000000000003e-05,
20
+ "loss": 1.701,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 2.4e-05,
26
+ "loss": 1.6232,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 3.2000000000000005e-05,
32
+ "loss": 1.705,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 4e-05,
38
+ "loss": 1.6552,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 4.8e-05,
44
+ "loss": 1.7611,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 5.6e-05,
50
+ "loss": 1.6008,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 6.400000000000001e-05,
56
+ "loss": 1.6468,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.09,
61
+ "learning_rate": 7.2e-05,
62
+ "loss": 1.6148,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.1,
67
+ "learning_rate": 8e-05,
68
+ "loss": 1.6125,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.11,
73
+ "learning_rate": 7.999779207981935e-05,
74
+ "loss": 1.6532,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.12,
79
+ "learning_rate": 7.999116856302298e-05,
80
+ "loss": 1.528,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.13,
85
+ "learning_rate": 7.998013018082072e-05,
86
+ "loss": 1.5758,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.14,
91
+ "learning_rate": 7.996467815180588e-05,
92
+ "loss": 1.6549,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.15,
97
+ "learning_rate": 7.994481418182082e-05,
98
+ "loss": 1.3725,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.15,
103
+ "learning_rate": 7.992054046376854e-05,
104
+ "loss": 1.6324,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.16,
109
+ "learning_rate": 7.989185967737066e-05,
110
+ "loss": 1.5984,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.17,
115
+ "learning_rate": 7.985877498887149e-05,
116
+ "loss": 1.7095,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.18,
121
+ "learning_rate": 7.982129005068865e-05,
122
+ "loss": 1.4843,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.19,
127
+ "learning_rate": 7.977940900100967e-05,
128
+ "loss": 1.6701,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "learning_rate": 7.973313646333532e-05,
134
+ "loss": 1.6216,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.21,
139
+ "learning_rate": 7.968247754596908e-05,
140
+ "loss": 1.6616,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.22,
145
+ "learning_rate": 7.962743784145323e-05,
146
+ "loss": 1.5737,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.23,
151
+ "learning_rate": 7.956802342595152e-05,
152
+ "loss": 1.5716,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.24,
157
+ "learning_rate": 7.950424085857827e-05,
158
+ "loss": 1.4727,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.25,
163
+ "learning_rate": 7.943609718067437e-05,
164
+ "loss": 1.676,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.26,
169
+ "learning_rate": 7.936359991502993e-05,
170
+ "loss": 1.5953,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.27,
175
+ "learning_rate": 7.92867570650537e-05,
176
+ "loss": 1.5233,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.28,
181
+ "learning_rate": 7.920557711388967e-05,
182
+ "loss": 1.7087,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.29,
187
+ "learning_rate": 7.912006902348045e-05,
188
+ "loss": 1.6314,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.3,
193
+ "learning_rate": 7.903024223357797e-05,
194
+ "loss": 1.5763,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.31,
199
+ "learning_rate": 7.893610666070134e-05,
200
+ "loss": 1.7077,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.32,
205
+ "learning_rate": 7.883767269704209e-05,
206
+ "loss": 1.5335,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.33,
211
+ "learning_rate": 7.873495120931697e-05,
212
+ "loss": 1.6053,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.34,
217
+ "learning_rate": 7.86279535375683e-05,
218
+ "loss": 1.3602,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.35,
223
+ "learning_rate": 7.851669149391198e-05,
224
+ "loss": 1.3493,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.36,
229
+ "learning_rate": 7.84011773612336e-05,
230
+ "loss": 1.5459,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.37,
235
+ "learning_rate": 7.828142389183239e-05,
236
+ "loss": 1.5918,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.38,
241
+ "learning_rate": 7.815744430601344e-05,
242
+ "loss": 1.4649,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.39,
247
+ "learning_rate": 7.802925229062823e-05,
248
+ "loss": 1.5555,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.4,
253
+ "learning_rate": 7.789686199756365e-05,
254
+ "loss": 1.6162,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.41,
259
+ "learning_rate": 7.776028804217968e-05,
260
+ "loss": 1.5508,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.42,
265
+ "learning_rate": 7.761954550169593e-05,
266
+ "loss": 1.7089,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.43,
271
+ "learning_rate": 7.74746499135272e-05,
272
+ "loss": 1.6471,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.44,
277
+ "learning_rate": 7.732561727356811e-05,
278
+ "loss": 1.5361,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.45,
283
+ "learning_rate": 7.717246403442735e-05,
284
+ "loss": 1.4333,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.46,
289
+ "learning_rate": 7.701520710361129e-05,
290
+ "loss": 1.5406,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.46,
295
+ "learning_rate": 7.685386384165748e-05,
296
+ "loss": 1.6056,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.47,
301
+ "learning_rate": 7.668845206021812e-05,
302
+ "loss": 1.5945,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.48,
307
+ "learning_rate": 7.651899002009375e-05,
308
+ "loss": 1.6727,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.49,
313
+ "learning_rate": 7.634549642921725e-05,
314
+ "loss": 1.6352,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.5,
319
+ "learning_rate": 7.616799044058867e-05,
320
+ "loss": 1.5127,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.51,
325
+ "learning_rate": 7.598649165016073e-05,
326
+ "loss": 1.5696,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.52,
331
+ "learning_rate": 7.58010200946755e-05,
332
+ "loss": 1.5987,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.53,
337
+ "learning_rate": 7.561159624945257e-05,
338
+ "loss": 1.5007,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.54,
343
+ "learning_rate": 7.541824102612839e-05,
344
+ "loss": 1.697,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.55,
349
+ "learning_rate": 7.5220975770348e-05,
350
+ "loss": 1.5062,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.56,
355
+ "learning_rate": 7.501982225940833e-05,
356
+ "loss": 1.6713,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.57,
361
+ "learning_rate": 7.48148026998542e-05,
362
+ "loss": 1.5913,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.58,
367
+ "learning_rate": 7.460593972502674e-05,
368
+ "loss": 1.5841,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.59,
373
+ "learning_rate": 7.439325639256483e-05,
374
+ "loss": 1.5459,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.6,
379
+ "learning_rate": 7.417677618185955e-05,
380
+ "loss": 1.5911,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.61,
385
+ "learning_rate": 7.39565229914622e-05,
386
+ "loss": 1.5862,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.62,
391
+ "learning_rate": 7.373252113644596e-05,
392
+ "loss": 1.6381,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.63,
397
+ "learning_rate": 7.350479534572166e-05,
398
+ "loss": 1.5476,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.64,
403
+ "learning_rate": 7.327337075930775e-05,
404
+ "loss": 1.579,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.65,
409
+ "learning_rate": 7.303827292555495e-05,
410
+ "loss": 1.6105,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.66,
415
+ "learning_rate": 7.279952779832584e-05,
416
+ "loss": 1.5728,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.67,
421
+ "learning_rate": 7.255716173412966e-05,
422
+ "loss": 1.6509,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.68,
427
+ "learning_rate": 7.23112014892126e-05,
428
+ "loss": 1.5586,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.69,
433
+ "learning_rate": 7.20616742166041e-05,
434
+ "loss": 1.3865,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.7,
439
+ "learning_rate": 7.180860746311917e-05,
440
+ "loss": 1.5214,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.71,
445
+ "learning_rate": 7.155202916631743e-05,
446
+ "loss": 1.5699,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.72,
451
+ "learning_rate": 7.129196765141886e-05,
452
+ "loss": 1.388,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.73,
457
+ "learning_rate": 7.10284516281768e-05,
458
+ "loss": 1.5735,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.74,
463
+ "learning_rate": 7.076151018770854e-05,
464
+ "loss": 1.6245,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.75,
469
+ "learning_rate": 7.049117279928374e-05,
470
+ "loss": 1.6489,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.76,
475
+ "learning_rate": 7.021746930707117e-05,
476
+ "loss": 1.5712,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.77,
481
+ "learning_rate": 6.994042992684406e-05,
482
+ "loss": 1.6359,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.77,
487
+ "learning_rate": 6.966008524264429e-05,
488
+ "loss": 1.6452,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.78,
493
+ "learning_rate": 6.937646620340618e-05,
494
+ "loss": 1.5655,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.79,
499
+ "learning_rate": 6.908960411953973e-05,
500
+ "loss": 1.5791,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.8,
505
+ "learning_rate": 6.879953065947416e-05,
506
+ "loss": 1.685,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.81,
511
+ "learning_rate": 6.850627784616178e-05,
512
+ "loss": 1.5755,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.82,
517
+ "learning_rate": 6.82098780535428e-05,
518
+ "loss": 1.5878,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.83,
523
+ "learning_rate": 6.791036400297142e-05,
524
+ "loss": 1.6273,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.84,
529
+ "learning_rate": 6.760776875960347e-05,
530
+ "loss": 1.625,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.85,
535
+ "learning_rate": 6.730212572874618e-05,
536
+ "loss": 1.6891,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.86,
541
+ "learning_rate": 6.699346865217031e-05,
542
+ "loss": 1.5593,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.87,
547
+ "learning_rate": 6.668183160438531e-05,
548
+ "loss": 1.6518,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.88,
553
+ "learning_rate": 6.636724898887751e-05,
554
+ "loss": 1.6314,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.89,
559
+ "learning_rate": 6.604975553431219e-05,
560
+ "loss": 1.6267,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.9,
565
+ "learning_rate": 6.572938629069959e-05,
566
+ "loss": 1.5465,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.91,
571
+ "learning_rate": 6.540617662552565e-05,
572
+ "loss": 1.6302,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.92,
577
+ "learning_rate": 6.508016221984747e-05,
578
+ "loss": 1.5039,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.93,
583
+ "learning_rate": 6.475137906435435e-05,
584
+ "loss": 1.6879,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.94,
589
+ "learning_rate": 6.441986345539446e-05,
590
+ "loss": 1.5822,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.95,
595
+ "learning_rate": 6.408565199096798e-05,
596
+ "loss": 1.5612,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.96,
601
+ "learning_rate": 6.374878156668676e-05,
602
+ "loss": 1.6022,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.97,
607
+ "learning_rate": 6.340928937170118e-05,
608
+ "loss": 1.6292,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.98,
613
+ "learning_rate": 6.30672128845947e-05,
614
+ "loss": 1.6783,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.99,
619
+ "learning_rate": 6.272258986924624e-05,
620
+ "loss": 1.5995,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.0,
625
+ "learning_rate": 6.237545837066133e-05,
626
+ "loss": 1.5811,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.01,
631
+ "learning_rate": 6.202585671077204e-05,
632
+ "loss": 1.5029,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.02,
637
+ "learning_rate": 6.167382348420637e-05,
638
+ "loss": 1.5067,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.01,
643
+ "learning_rate": 6.131939755402755e-05,
644
+ "loss": 1.4932,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.02,
649
+ "learning_rate": 6.09626180474438e-05,
650
+ "loss": 1.6286,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.03,
655
+ "learning_rate": 6.060352435148874e-05,
656
+ "loss": 1.5934,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 1.04,
661
+ "learning_rate": 6.024215610867327e-05,
662
+ "loss": 1.5562,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 1.05,
667
+ "learning_rate": 5.9878553212609184e-05,
668
+ "loss": 1.5332,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 1.06,
673
+ "learning_rate": 5.95127558036051e-05,
674
+ "loss": 1.604,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 1.07,
679
+ "learning_rate": 5.9144804264235066e-05,
680
+ "loss": 1.4745,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 1.08,
685
+ "learning_rate": 5.8774739214880554e-05,
686
+ "loss": 1.4254,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 1.08,
691
+ "learning_rate": 5.840260150924609e-05,
692
+ "loss": 1.6039,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.09,
697
+ "learning_rate": 5.802843222984919e-05,
698
+ "loss": 1.6403,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.1,
703
+ "learning_rate": 5.765227268348501e-05,
704
+ "loss": 1.6617,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.11,
709
+ "learning_rate": 5.727416439666622e-05,
710
+ "loss": 1.5826,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.12,
715
+ "learning_rate": 5.689414911103867e-05,
716
+ "loss": 1.4698,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.13,
721
+ "learning_rate": 5.651226877877326e-05,
722
+ "loss": 1.3276,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 1.14,
727
+ "learning_rate": 5.612856555793459e-05,
728
+ "loss": 1.4114,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 1.15,
733
+ "learning_rate": 5.574308180782693e-05,
734
+ "loss": 1.583,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 1.16,
739
+ "learning_rate": 5.5355860084317787e-05,
740
+ "loss": 1.684,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 1.17,
745
+ "learning_rate": 5.496694313514009e-05,
746
+ "loss": 1.6231,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 1.18,
751
+ "learning_rate": 5.457637389517285e-05,
752
+ "loss": 1.5874,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 1.19,
757
+ "learning_rate": 5.4184195481701425e-05,
758
+ "loss": 1.4062,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 1.2,
763
+ "learning_rate": 5.3790451189657486e-05,
764
+ "loss": 1.3867,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 1.21,
769
+ "learning_rate": 5.339518448683945e-05,
770
+ "loss": 1.5874,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 1.22,
775
+ "learning_rate": 5.2998439009113814e-05,
776
+ "loss": 1.6856,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 1.23,
781
+ "learning_rate": 5.260025855559792e-05,
782
+ "loss": 1.5057,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 1.24,
787
+ "learning_rate": 5.2200687083824706e-05,
788
+ "loss": 1.5815,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 1.25,
793
+ "learning_rate": 5.179976870488999e-05,
794
+ "loss": 1.4807,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 1.26,
799
+ "learning_rate": 5.1397547678582745e-05,
800
+ "loss": 1.542,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 1.27,
805
+ "learning_rate": 5.099406840849902e-05,
806
+ "loss": 1.5297,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 1.28,
811
+ "learning_rate": 5.058937543713999e-05,
812
+ "loss": 1.461,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 1.29,
817
+ "learning_rate": 5.018351344099453e-05,
818
+ "loss": 1.5576,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 1.3,
823
+ "learning_rate": 4.9776527225607274e-05,
824
+ "loss": 1.4301,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 1.31,
829
+ "learning_rate": 4.93684617206321e-05,
830
+ "loss": 1.6082,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 1.32,
835
+ "learning_rate": 4.89593619748722e-05,
836
+ "loss": 1.6474,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 1.33,
841
+ "learning_rate": 4.8549273151306795e-05,
842
+ "loss": 1.5037,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 1.34,
847
+ "learning_rate": 4.8138240522105365e-05,
848
+ "loss": 1.5476,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 1.35,
853
+ "learning_rate": 4.7726309463629733e-05,
854
+ "loss": 1.5466,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 1.36,
859
+ "learning_rate": 4.731352545142478e-05,
860
+ "loss": 1.6127,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 1.37,
865
+ "learning_rate": 4.689993405519802e-05,
866
+ "loss": 1.6105,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 1.38,
871
+ "learning_rate": 4.648558093378899e-05,
872
+ "loss": 1.492,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 1.38,
877
+ "learning_rate": 4.607051183012862e-05,
878
+ "loss": 1.5909,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 1.39,
883
+ "learning_rate": 4.5654772566189415e-05,
884
+ "loss": 1.5474,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 1.4,
889
+ "learning_rate": 4.5238409037926905e-05,
890
+ "loss": 1.6371,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 1.41,
895
+ "learning_rate": 4.4821467210212924e-05,
896
+ "loss": 1.4939,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 1.42,
901
+ "learning_rate": 4.4403993111761265e-05,
902
+ "loss": 1.5418,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 1.43,
907
+ "learning_rate": 4.398603283004626e-05,
908
+ "loss": 1.5505,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 1.44,
913
+ "learning_rate": 4.356763250621496e-05,
914
+ "loss": 1.4928,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 1.45,
919
+ "learning_rate": 4.314883832999326e-05,
920
+ "loss": 1.4589,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.46,
925
+ "learning_rate": 4.272969653458685e-05,
926
+ "loss": 1.5522,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.47,
931
+ "learning_rate": 4.231025339157714e-05,
932
+ "loss": 1.5325,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.48,
937
+ "learning_rate": 4.189055520581315e-05,
938
+ "loss": 1.4912,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.49,
943
+ "learning_rate": 4.147064831029959e-05,
944
+ "loss": 1.5292,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.5,
949
+ "learning_rate": 4.105057906108189e-05,
950
+ "loss": 1.4766,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.51,
955
+ "learning_rate": 4.063039383212866e-05,
956
+ "loss": 1.6332,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.52,
961
+ "learning_rate": 4.021013901021225e-05,
962
+ "loss": 1.5232,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.53,
967
+ "learning_rate": 3.978986098978777e-05,
968
+ "loss": 1.5639,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.54,
973
+ "learning_rate": 3.936960616787135e-05,
974
+ "loss": 1.6731,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.55,
979
+ "learning_rate": 3.8949420938918124e-05,
980
+ "loss": 1.5748,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.56,
985
+ "learning_rate": 3.852935168970042e-05,
986
+ "loss": 1.4529,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.57,
991
+ "learning_rate": 3.810944479418686e-05,
992
+ "loss": 1.5499,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.58,
997
+ "learning_rate": 3.768974660842287e-05,
998
+ "loss": 1.4416,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.59,
1003
+ "learning_rate": 3.727030346541317e-05,
1004
+ "loss": 1.4857,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.6,
1009
+ "learning_rate": 3.685116167000675e-05,
1010
+ "loss": 1.6612,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.61,
1015
+ "learning_rate": 3.6432367493785056e-05,
1016
+ "loss": 1.6123,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.62,
1021
+ "learning_rate": 3.601396716995375e-05,
1022
+ "loss": 1.4952,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.63,
1027
+ "learning_rate": 3.559600688823875e-05,
1028
+ "loss": 1.5899,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.64,
1033
+ "learning_rate": 3.517853278978708e-05,
1034
+ "loss": 1.5784,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.65,
1039
+ "learning_rate": 3.4761590962073115e-05,
1040
+ "loss": 1.6251,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.66,
1045
+ "learning_rate": 3.434522743381061e-05,
1046
+ "loss": 1.6478,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.67,
1051
+ "learning_rate": 3.39294881698714e-05,
1052
+ "loss": 1.5043,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.68,
1057
+ "learning_rate": 3.3514419066211025e-05,
1058
+ "loss": 1.6968,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.69,
1063
+ "learning_rate": 3.310006594480199e-05,
1064
+ "loss": 1.395,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.69,
1069
+ "learning_rate": 3.268647454857524e-05,
1070
+ "loss": 1.6285,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.7,
1075
+ "learning_rate": 3.227369053637028e-05,
1076
+ "loss": 1.4827,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.71,
1081
+ "learning_rate": 3.1861759477894656e-05,
1082
+ "loss": 1.3457,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.72,
1087
+ "learning_rate": 3.145072684869322e-05,
1088
+ "loss": 1.4998,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.73,
1093
+ "learning_rate": 3.104063802512782e-05,
1094
+ "loss": 1.536,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.74,
1099
+ "learning_rate": 3.063153827936792e-05,
1100
+ "loss": 1.5633,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.75,
1105
+ "learning_rate": 3.0223472774392753e-05,
1106
+ "loss": 1.7605,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.76,
1111
+ "learning_rate": 2.9816486559005482e-05,
1112
+ "loss": 1.5604,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.77,
1117
+ "learning_rate": 2.9410624562860026e-05,
1118
+ "loss": 1.5909,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.78,
1123
+ "learning_rate": 2.9005931591500974e-05,
1124
+ "loss": 1.4833,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.79,
1129
+ "learning_rate": 2.860245232141726e-05,
1130
+ "loss": 1.551,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.8,
1135
+ "learning_rate": 2.8200231295110012e-05,
1136
+ "loss": 1.5279,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.81,
1141
+ "learning_rate": 2.7799312916175294e-05,
1142
+ "loss": 1.5564,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.82,
1147
+ "learning_rate": 2.7399741444402087e-05,
1148
+ "loss": 1.4859,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.83,
1153
+ "learning_rate": 2.7001560990886196e-05,
1154
+ "loss": 1.5372,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.84,
1159
+ "learning_rate": 2.6604815513160556e-05,
1160
+ "loss": 1.4932,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.85,
1165
+ "learning_rate": 2.6209548810342517e-05,
1166
+ "loss": 1.5412,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.86,
1171
+ "learning_rate": 2.5815804518298575e-05,
1172
+ "loss": 1.4758,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.87,
1177
+ "learning_rate": 2.542362610482715e-05,
1178
+ "loss": 1.715,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.88,
1183
+ "learning_rate": 2.503305686485991e-05,
1184
+ "loss": 1.5454,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.89,
1189
+ "learning_rate": 2.464413991568222e-05,
1190
+ "loss": 1.43,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.9,
1195
+ "learning_rate": 2.4256918192173088e-05,
1196
+ "loss": 1.5798,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.91,
1201
+ "learning_rate": 2.3871434442065414e-05,
1202
+ "loss": 1.4315,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.92,
1207
+ "learning_rate": 2.3487731221226754e-05,
1208
+ "loss": 1.6566,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.93,
1213
+ "learning_rate": 2.3105850888961348e-05,
1214
+ "loss": 1.5944,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.94,
1219
+ "learning_rate": 2.272583560333379e-05,
1220
+ "loss": 1.5169,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.95,
1225
+ "learning_rate": 2.2347727316515e-05,
1226
+ "loss": 1.6553,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.96,
1231
+ "learning_rate": 2.1971567770150814e-05,
1232
+ "loss": 1.6193,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.97,
1237
+ "learning_rate": 2.1597398490753917e-05,
1238
+ "loss": 1.6137,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.98,
1243
+ "learning_rate": 2.1225260785119456e-05,
1244
+ "loss": 1.459,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.99,
1249
+ "learning_rate": 2.0855195735764947e-05,
1250
+ "loss": 1.6145,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 2.0,
1255
+ "learning_rate": 2.0487244196394912e-05,
1256
+ "loss": 1.607,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 2.0,
1261
+ "learning_rate": 2.0121446787390822e-05,
1262
+ "loss": 1.5978,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 2.01,
1267
+ "learning_rate": 1.9757843891326736e-05,
1268
+ "loss": 1.4527,
1269
+ "step": 210
1270
+ }
1271
+ ],
1272
+ "logging_steps": 1,
1273
+ "max_steps": 309,
1274
+ "num_train_epochs": 3,
1275
+ "save_steps": 500,
1276
+ "total_flos": 1.4076450105049743e+18,
1277
+ "trial_name": null,
1278
+ "trial_params": null
1279
+ }
checkpoint-210/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bedb4a76f95d260ade08f85bd50a2cddf7cfed301c3af564dd88bf3b862017b1
3
+ size 4539
checkpoint-309/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./models/yi-llama-34b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: True
207
+ - load_in_4bit: False
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: fp4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float32
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0
checkpoint-309/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/yi-llama-34b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "gate_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-309/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b9f828e31069b372aa184066b0661798bc4ba13e56d7db23f5300739bb1f1bc
3
+ size 491823213
checkpoint-309/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d77d4d4656dcffe216f52672a7d0ca8a7f7b2f75cc223d4af2c16f3a7249845b
3
+ size 247181823
checkpoint-309/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a4a6c61a95a57e79ff0c7446b9bfa57d95254a41aa8a7d4ec0f21c61b903191
3
+ size 14575
checkpoint-309/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:350994148bd7647f25fdc4615bd6aad71b739cd43b523171f4179b311fc4d5b3
3
+ size 627
checkpoint-309/trainer_state.json ADDED
@@ -0,0 +1,1873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9539951573849876,
5
+ "eval_steps": 500,
6
+ "global_step": 309,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 8.000000000000001e-06,
14
+ "loss": 1.6073,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 1.6000000000000003e-05,
20
+ "loss": 1.701,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 2.4e-05,
26
+ "loss": 1.6232,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 3.2000000000000005e-05,
32
+ "loss": 1.705,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 4e-05,
38
+ "loss": 1.6552,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 4.8e-05,
44
+ "loss": 1.7611,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 5.6e-05,
50
+ "loss": 1.6008,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 6.400000000000001e-05,
56
+ "loss": 1.6468,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.09,
61
+ "learning_rate": 7.2e-05,
62
+ "loss": 1.6148,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.1,
67
+ "learning_rate": 8e-05,
68
+ "loss": 1.6125,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.11,
73
+ "learning_rate": 7.999779207981935e-05,
74
+ "loss": 1.6532,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.12,
79
+ "learning_rate": 7.999116856302298e-05,
80
+ "loss": 1.528,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.13,
85
+ "learning_rate": 7.998013018082072e-05,
86
+ "loss": 1.5758,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.14,
91
+ "learning_rate": 7.996467815180588e-05,
92
+ "loss": 1.6549,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.15,
97
+ "learning_rate": 7.994481418182082e-05,
98
+ "loss": 1.3725,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.15,
103
+ "learning_rate": 7.992054046376854e-05,
104
+ "loss": 1.6324,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.16,
109
+ "learning_rate": 7.989185967737066e-05,
110
+ "loss": 1.5984,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.17,
115
+ "learning_rate": 7.985877498887149e-05,
116
+ "loss": 1.7095,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.18,
121
+ "learning_rate": 7.982129005068865e-05,
122
+ "loss": 1.4843,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.19,
127
+ "learning_rate": 7.977940900100967e-05,
128
+ "loss": 1.6701,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "learning_rate": 7.973313646333532e-05,
134
+ "loss": 1.6216,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.21,
139
+ "learning_rate": 7.968247754596908e-05,
140
+ "loss": 1.6616,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.22,
145
+ "learning_rate": 7.962743784145323e-05,
146
+ "loss": 1.5737,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.23,
151
+ "learning_rate": 7.956802342595152e-05,
152
+ "loss": 1.5716,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.24,
157
+ "learning_rate": 7.950424085857827e-05,
158
+ "loss": 1.4727,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.25,
163
+ "learning_rate": 7.943609718067437e-05,
164
+ "loss": 1.676,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.26,
169
+ "learning_rate": 7.936359991502993e-05,
170
+ "loss": 1.5953,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.27,
175
+ "learning_rate": 7.92867570650537e-05,
176
+ "loss": 1.5233,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.28,
181
+ "learning_rate": 7.920557711388967e-05,
182
+ "loss": 1.7087,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.29,
187
+ "learning_rate": 7.912006902348045e-05,
188
+ "loss": 1.6314,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.3,
193
+ "learning_rate": 7.903024223357797e-05,
194
+ "loss": 1.5763,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.31,
199
+ "learning_rate": 7.893610666070134e-05,
200
+ "loss": 1.7077,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.32,
205
+ "learning_rate": 7.883767269704209e-05,
206
+ "loss": 1.5335,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.33,
211
+ "learning_rate": 7.873495120931697e-05,
212
+ "loss": 1.6053,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.34,
217
+ "learning_rate": 7.86279535375683e-05,
218
+ "loss": 1.3602,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.35,
223
+ "learning_rate": 7.851669149391198e-05,
224
+ "loss": 1.3493,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.36,
229
+ "learning_rate": 7.84011773612336e-05,
230
+ "loss": 1.5459,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.37,
235
+ "learning_rate": 7.828142389183239e-05,
236
+ "loss": 1.5918,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.38,
241
+ "learning_rate": 7.815744430601344e-05,
242
+ "loss": 1.4649,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.39,
247
+ "learning_rate": 7.802925229062823e-05,
248
+ "loss": 1.5555,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.4,
253
+ "learning_rate": 7.789686199756365e-05,
254
+ "loss": 1.6162,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.41,
259
+ "learning_rate": 7.776028804217968e-05,
260
+ "loss": 1.5508,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.42,
265
+ "learning_rate": 7.761954550169593e-05,
266
+ "loss": 1.7089,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.43,
271
+ "learning_rate": 7.74746499135272e-05,
272
+ "loss": 1.6471,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.44,
277
+ "learning_rate": 7.732561727356811e-05,
278
+ "loss": 1.5361,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.45,
283
+ "learning_rate": 7.717246403442735e-05,
284
+ "loss": 1.4333,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.46,
289
+ "learning_rate": 7.701520710361129e-05,
290
+ "loss": 1.5406,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.46,
295
+ "learning_rate": 7.685386384165748e-05,
296
+ "loss": 1.6056,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.47,
301
+ "learning_rate": 7.668845206021812e-05,
302
+ "loss": 1.5945,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.48,
307
+ "learning_rate": 7.651899002009375e-05,
308
+ "loss": 1.6727,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.49,
313
+ "learning_rate": 7.634549642921725e-05,
314
+ "loss": 1.6352,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.5,
319
+ "learning_rate": 7.616799044058867e-05,
320
+ "loss": 1.5127,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.51,
325
+ "learning_rate": 7.598649165016073e-05,
326
+ "loss": 1.5696,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.52,
331
+ "learning_rate": 7.58010200946755e-05,
332
+ "loss": 1.5987,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.53,
337
+ "learning_rate": 7.561159624945257e-05,
338
+ "loss": 1.5007,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.54,
343
+ "learning_rate": 7.541824102612839e-05,
344
+ "loss": 1.697,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.55,
349
+ "learning_rate": 7.5220975770348e-05,
350
+ "loss": 1.5062,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.56,
355
+ "learning_rate": 7.501982225940833e-05,
356
+ "loss": 1.6713,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.57,
361
+ "learning_rate": 7.48148026998542e-05,
362
+ "loss": 1.5913,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.58,
367
+ "learning_rate": 7.460593972502674e-05,
368
+ "loss": 1.5841,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.59,
373
+ "learning_rate": 7.439325639256483e-05,
374
+ "loss": 1.5459,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.6,
379
+ "learning_rate": 7.417677618185955e-05,
380
+ "loss": 1.5911,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.61,
385
+ "learning_rate": 7.39565229914622e-05,
386
+ "loss": 1.5862,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.62,
391
+ "learning_rate": 7.373252113644596e-05,
392
+ "loss": 1.6381,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.63,
397
+ "learning_rate": 7.350479534572166e-05,
398
+ "loss": 1.5476,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.64,
403
+ "learning_rate": 7.327337075930775e-05,
404
+ "loss": 1.579,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.65,
409
+ "learning_rate": 7.303827292555495e-05,
410
+ "loss": 1.6105,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.66,
415
+ "learning_rate": 7.279952779832584e-05,
416
+ "loss": 1.5728,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.67,
421
+ "learning_rate": 7.255716173412966e-05,
422
+ "loss": 1.6509,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.68,
427
+ "learning_rate": 7.23112014892126e-05,
428
+ "loss": 1.5586,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.69,
433
+ "learning_rate": 7.20616742166041e-05,
434
+ "loss": 1.3865,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.7,
439
+ "learning_rate": 7.180860746311917e-05,
440
+ "loss": 1.5214,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.71,
445
+ "learning_rate": 7.155202916631743e-05,
446
+ "loss": 1.5699,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.72,
451
+ "learning_rate": 7.129196765141886e-05,
452
+ "loss": 1.388,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.73,
457
+ "learning_rate": 7.10284516281768e-05,
458
+ "loss": 1.5735,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.74,
463
+ "learning_rate": 7.076151018770854e-05,
464
+ "loss": 1.6245,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.75,
469
+ "learning_rate": 7.049117279928374e-05,
470
+ "loss": 1.6489,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.76,
475
+ "learning_rate": 7.021746930707117e-05,
476
+ "loss": 1.5712,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.77,
481
+ "learning_rate": 6.994042992684406e-05,
482
+ "loss": 1.6359,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.77,
487
+ "learning_rate": 6.966008524264429e-05,
488
+ "loss": 1.6452,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.78,
493
+ "learning_rate": 6.937646620340618e-05,
494
+ "loss": 1.5655,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.79,
499
+ "learning_rate": 6.908960411953973e-05,
500
+ "loss": 1.5791,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.8,
505
+ "learning_rate": 6.879953065947416e-05,
506
+ "loss": 1.685,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.81,
511
+ "learning_rate": 6.850627784616178e-05,
512
+ "loss": 1.5755,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.82,
517
+ "learning_rate": 6.82098780535428e-05,
518
+ "loss": 1.5878,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.83,
523
+ "learning_rate": 6.791036400297142e-05,
524
+ "loss": 1.6273,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.84,
529
+ "learning_rate": 6.760776875960347e-05,
530
+ "loss": 1.625,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.85,
535
+ "learning_rate": 6.730212572874618e-05,
536
+ "loss": 1.6891,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.86,
541
+ "learning_rate": 6.699346865217031e-05,
542
+ "loss": 1.5593,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.87,
547
+ "learning_rate": 6.668183160438531e-05,
548
+ "loss": 1.6518,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.88,
553
+ "learning_rate": 6.636724898887751e-05,
554
+ "loss": 1.6314,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.89,
559
+ "learning_rate": 6.604975553431219e-05,
560
+ "loss": 1.6267,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.9,
565
+ "learning_rate": 6.572938629069959e-05,
566
+ "loss": 1.5465,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.91,
571
+ "learning_rate": 6.540617662552565e-05,
572
+ "loss": 1.6302,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.92,
577
+ "learning_rate": 6.508016221984747e-05,
578
+ "loss": 1.5039,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.93,
583
+ "learning_rate": 6.475137906435435e-05,
584
+ "loss": 1.6879,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.94,
589
+ "learning_rate": 6.441986345539446e-05,
590
+ "loss": 1.5822,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.95,
595
+ "learning_rate": 6.408565199096798e-05,
596
+ "loss": 1.5612,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.96,
601
+ "learning_rate": 6.374878156668676e-05,
602
+ "loss": 1.6022,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.97,
607
+ "learning_rate": 6.340928937170118e-05,
608
+ "loss": 1.6292,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.98,
613
+ "learning_rate": 6.30672128845947e-05,
614
+ "loss": 1.6783,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.99,
619
+ "learning_rate": 6.272258986924624e-05,
620
+ "loss": 1.5995,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.0,
625
+ "learning_rate": 6.237545837066133e-05,
626
+ "loss": 1.5811,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.01,
631
+ "learning_rate": 6.202585671077204e-05,
632
+ "loss": 1.5029,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.02,
637
+ "learning_rate": 6.167382348420637e-05,
638
+ "loss": 1.5067,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.01,
643
+ "learning_rate": 6.131939755402755e-05,
644
+ "loss": 1.4932,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.02,
649
+ "learning_rate": 6.09626180474438e-05,
650
+ "loss": 1.6286,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.03,
655
+ "learning_rate": 6.060352435148874e-05,
656
+ "loss": 1.5934,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 1.04,
661
+ "learning_rate": 6.024215610867327e-05,
662
+ "loss": 1.5562,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 1.05,
667
+ "learning_rate": 5.9878553212609184e-05,
668
+ "loss": 1.5332,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 1.06,
673
+ "learning_rate": 5.95127558036051e-05,
674
+ "loss": 1.604,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 1.07,
679
+ "learning_rate": 5.9144804264235066e-05,
680
+ "loss": 1.4745,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 1.08,
685
+ "learning_rate": 5.8774739214880554e-05,
686
+ "loss": 1.4254,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 1.08,
691
+ "learning_rate": 5.840260150924609e-05,
692
+ "loss": 1.6039,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.09,
697
+ "learning_rate": 5.802843222984919e-05,
698
+ "loss": 1.6403,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.1,
703
+ "learning_rate": 5.765227268348501e-05,
704
+ "loss": 1.6617,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.11,
709
+ "learning_rate": 5.727416439666622e-05,
710
+ "loss": 1.5826,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.12,
715
+ "learning_rate": 5.689414911103867e-05,
716
+ "loss": 1.4698,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.13,
721
+ "learning_rate": 5.651226877877326e-05,
722
+ "loss": 1.3276,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 1.14,
727
+ "learning_rate": 5.612856555793459e-05,
728
+ "loss": 1.4114,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 1.15,
733
+ "learning_rate": 5.574308180782693e-05,
734
+ "loss": 1.583,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 1.16,
739
+ "learning_rate": 5.5355860084317787e-05,
740
+ "loss": 1.684,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 1.17,
745
+ "learning_rate": 5.496694313514009e-05,
746
+ "loss": 1.6231,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 1.18,
751
+ "learning_rate": 5.457637389517285e-05,
752
+ "loss": 1.5874,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 1.19,
757
+ "learning_rate": 5.4184195481701425e-05,
758
+ "loss": 1.4062,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 1.2,
763
+ "learning_rate": 5.3790451189657486e-05,
764
+ "loss": 1.3867,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 1.21,
769
+ "learning_rate": 5.339518448683945e-05,
770
+ "loss": 1.5874,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 1.22,
775
+ "learning_rate": 5.2998439009113814e-05,
776
+ "loss": 1.6856,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 1.23,
781
+ "learning_rate": 5.260025855559792e-05,
782
+ "loss": 1.5057,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 1.24,
787
+ "learning_rate": 5.2200687083824706e-05,
788
+ "loss": 1.5815,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 1.25,
793
+ "learning_rate": 5.179976870488999e-05,
794
+ "loss": 1.4807,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 1.26,
799
+ "learning_rate": 5.1397547678582745e-05,
800
+ "loss": 1.542,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 1.27,
805
+ "learning_rate": 5.099406840849902e-05,
806
+ "loss": 1.5297,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 1.28,
811
+ "learning_rate": 5.058937543713999e-05,
812
+ "loss": 1.461,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 1.29,
817
+ "learning_rate": 5.018351344099453e-05,
818
+ "loss": 1.5576,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 1.3,
823
+ "learning_rate": 4.9776527225607274e-05,
824
+ "loss": 1.4301,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 1.31,
829
+ "learning_rate": 4.93684617206321e-05,
830
+ "loss": 1.6082,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 1.32,
835
+ "learning_rate": 4.89593619748722e-05,
836
+ "loss": 1.6474,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 1.33,
841
+ "learning_rate": 4.8549273151306795e-05,
842
+ "loss": 1.5037,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 1.34,
847
+ "learning_rate": 4.8138240522105365e-05,
848
+ "loss": 1.5476,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 1.35,
853
+ "learning_rate": 4.7726309463629733e-05,
854
+ "loss": 1.5466,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 1.36,
859
+ "learning_rate": 4.731352545142478e-05,
860
+ "loss": 1.6127,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 1.37,
865
+ "learning_rate": 4.689993405519802e-05,
866
+ "loss": 1.6105,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 1.38,
871
+ "learning_rate": 4.648558093378899e-05,
872
+ "loss": 1.492,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 1.38,
877
+ "learning_rate": 4.607051183012862e-05,
878
+ "loss": 1.5909,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 1.39,
883
+ "learning_rate": 4.5654772566189415e-05,
884
+ "loss": 1.5474,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 1.4,
889
+ "learning_rate": 4.5238409037926905e-05,
890
+ "loss": 1.6371,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 1.41,
895
+ "learning_rate": 4.4821467210212924e-05,
896
+ "loss": 1.4939,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 1.42,
901
+ "learning_rate": 4.4403993111761265e-05,
902
+ "loss": 1.5418,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 1.43,
907
+ "learning_rate": 4.398603283004626e-05,
908
+ "loss": 1.5505,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 1.44,
913
+ "learning_rate": 4.356763250621496e-05,
914
+ "loss": 1.4928,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 1.45,
919
+ "learning_rate": 4.314883832999326e-05,
920
+ "loss": 1.4589,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.46,
925
+ "learning_rate": 4.272969653458685e-05,
926
+ "loss": 1.5522,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.47,
931
+ "learning_rate": 4.231025339157714e-05,
932
+ "loss": 1.5325,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.48,
937
+ "learning_rate": 4.189055520581315e-05,
938
+ "loss": 1.4912,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.49,
943
+ "learning_rate": 4.147064831029959e-05,
944
+ "loss": 1.5292,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.5,
949
+ "learning_rate": 4.105057906108189e-05,
950
+ "loss": 1.4766,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.51,
955
+ "learning_rate": 4.063039383212866e-05,
956
+ "loss": 1.6332,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.52,
961
+ "learning_rate": 4.021013901021225e-05,
962
+ "loss": 1.5232,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.53,
967
+ "learning_rate": 3.978986098978777e-05,
968
+ "loss": 1.5639,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.54,
973
+ "learning_rate": 3.936960616787135e-05,
974
+ "loss": 1.6731,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.55,
979
+ "learning_rate": 3.8949420938918124e-05,
980
+ "loss": 1.5748,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.56,
985
+ "learning_rate": 3.852935168970042e-05,
986
+ "loss": 1.4529,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.57,
991
+ "learning_rate": 3.810944479418686e-05,
992
+ "loss": 1.5499,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.58,
997
+ "learning_rate": 3.768974660842287e-05,
998
+ "loss": 1.4416,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.59,
1003
+ "learning_rate": 3.727030346541317e-05,
1004
+ "loss": 1.4857,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.6,
1009
+ "learning_rate": 3.685116167000675e-05,
1010
+ "loss": 1.6612,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.61,
1015
+ "learning_rate": 3.6432367493785056e-05,
1016
+ "loss": 1.6123,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.62,
1021
+ "learning_rate": 3.601396716995375e-05,
1022
+ "loss": 1.4952,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.63,
1027
+ "learning_rate": 3.559600688823875e-05,
1028
+ "loss": 1.5899,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.64,
1033
+ "learning_rate": 3.517853278978708e-05,
1034
+ "loss": 1.5784,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.65,
1039
+ "learning_rate": 3.4761590962073115e-05,
1040
+ "loss": 1.6251,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.66,
1045
+ "learning_rate": 3.434522743381061e-05,
1046
+ "loss": 1.6478,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.67,
1051
+ "learning_rate": 3.39294881698714e-05,
1052
+ "loss": 1.5043,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.68,
1057
+ "learning_rate": 3.3514419066211025e-05,
1058
+ "loss": 1.6968,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.69,
1063
+ "learning_rate": 3.310006594480199e-05,
1064
+ "loss": 1.395,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.69,
1069
+ "learning_rate": 3.268647454857524e-05,
1070
+ "loss": 1.6285,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.7,
1075
+ "learning_rate": 3.227369053637028e-05,
1076
+ "loss": 1.4827,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.71,
1081
+ "learning_rate": 3.1861759477894656e-05,
1082
+ "loss": 1.3457,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.72,
1087
+ "learning_rate": 3.145072684869322e-05,
1088
+ "loss": 1.4998,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.73,
1093
+ "learning_rate": 3.104063802512782e-05,
1094
+ "loss": 1.536,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.74,
1099
+ "learning_rate": 3.063153827936792e-05,
1100
+ "loss": 1.5633,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.75,
1105
+ "learning_rate": 3.0223472774392753e-05,
1106
+ "loss": 1.7605,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.76,
1111
+ "learning_rate": 2.9816486559005482e-05,
1112
+ "loss": 1.5604,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.77,
1117
+ "learning_rate": 2.9410624562860026e-05,
1118
+ "loss": 1.5909,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.78,
1123
+ "learning_rate": 2.9005931591500974e-05,
1124
+ "loss": 1.4833,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.79,
1129
+ "learning_rate": 2.860245232141726e-05,
1130
+ "loss": 1.551,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.8,
1135
+ "learning_rate": 2.8200231295110012e-05,
1136
+ "loss": 1.5279,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.81,
1141
+ "learning_rate": 2.7799312916175294e-05,
1142
+ "loss": 1.5564,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.82,
1147
+ "learning_rate": 2.7399741444402087e-05,
1148
+ "loss": 1.4859,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.83,
1153
+ "learning_rate": 2.7001560990886196e-05,
1154
+ "loss": 1.5372,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.84,
1159
+ "learning_rate": 2.6604815513160556e-05,
1160
+ "loss": 1.4932,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.85,
1165
+ "learning_rate": 2.6209548810342517e-05,
1166
+ "loss": 1.5412,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.86,
1171
+ "learning_rate": 2.5815804518298575e-05,
1172
+ "loss": 1.4758,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.87,
1177
+ "learning_rate": 2.542362610482715e-05,
1178
+ "loss": 1.715,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.88,
1183
+ "learning_rate": 2.503305686485991e-05,
1184
+ "loss": 1.5454,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.89,
1189
+ "learning_rate": 2.464413991568222e-05,
1190
+ "loss": 1.43,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.9,
1195
+ "learning_rate": 2.4256918192173088e-05,
1196
+ "loss": 1.5798,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.91,
1201
+ "learning_rate": 2.3871434442065414e-05,
1202
+ "loss": 1.4315,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.92,
1207
+ "learning_rate": 2.3487731221226754e-05,
1208
+ "loss": 1.6566,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.93,
1213
+ "learning_rate": 2.3105850888961348e-05,
1214
+ "loss": 1.5944,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.94,
1219
+ "learning_rate": 2.272583560333379e-05,
1220
+ "loss": 1.5169,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.95,
1225
+ "learning_rate": 2.2347727316515e-05,
1226
+ "loss": 1.6553,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.96,
1231
+ "learning_rate": 2.1971567770150814e-05,
1232
+ "loss": 1.6193,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.97,
1237
+ "learning_rate": 2.1597398490753917e-05,
1238
+ "loss": 1.6137,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.98,
1243
+ "learning_rate": 2.1225260785119456e-05,
1244
+ "loss": 1.459,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.99,
1249
+ "learning_rate": 2.0855195735764947e-05,
1250
+ "loss": 1.6145,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 2.0,
1255
+ "learning_rate": 2.0487244196394912e-05,
1256
+ "loss": 1.607,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 2.0,
1261
+ "learning_rate": 2.0121446787390822e-05,
1262
+ "loss": 1.5978,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 2.01,
1267
+ "learning_rate": 1.9757843891326736e-05,
1268
+ "loss": 1.4527,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 2.0,
1273
+ "learning_rate": 1.939647564851127e-05,
1274
+ "loss": 1.3158,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 2.01,
1279
+ "learning_rate": 1.9037381952556217e-05,
1280
+ "loss": 1.6338,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 2.02,
1285
+ "learning_rate": 1.8680602445972463e-05,
1286
+ "loss": 1.4853,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 2.03,
1291
+ "learning_rate": 1.832617651579365e-05,
1292
+ "loss": 1.6323,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 2.04,
1297
+ "learning_rate": 1.797414328922797e-05,
1298
+ "loss": 1.5361,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 2.05,
1303
+ "learning_rate": 1.7624541629338676e-05,
1304
+ "loss": 1.3903,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 2.06,
1309
+ "learning_rate": 1.7277410130753775e-05,
1310
+ "loss": 1.6403,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 2.07,
1315
+ "learning_rate": 1.6932787115405318e-05,
1316
+ "loss": 1.523,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 2.08,
1321
+ "learning_rate": 1.6590710628298826e-05,
1322
+ "loss": 1.5463,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 2.09,
1327
+ "learning_rate": 1.6251218433313254e-05,
1328
+ "loss": 1.5958,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 2.1,
1333
+ "learning_rate": 1.591434800903203e-05,
1334
+ "loss": 1.521,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 2.11,
1339
+ "learning_rate": 1.558013654460555e-05,
1340
+ "loss": 1.4829,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 2.12,
1345
+ "learning_rate": 1.5248620935645666e-05,
1346
+ "loss": 1.3314,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 2.13,
1351
+ "learning_rate": 1.4919837780152544e-05,
1352
+ "loss": 1.6689,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 2.14,
1357
+ "learning_rate": 1.4593823374474374e-05,
1358
+ "loss": 1.5073,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 2.15,
1363
+ "learning_rate": 1.4270613709300429e-05,
1364
+ "loss": 1.5984,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 2.16,
1369
+ "learning_rate": 1.3950244465687833e-05,
1370
+ "loss": 1.5743,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 2.17,
1375
+ "learning_rate": 1.3632751011122497e-05,
1376
+ "loss": 1.5248,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 2.18,
1381
+ "learning_rate": 1.3318168395614697e-05,
1382
+ "loss": 1.6756,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 2.19,
1387
+ "learning_rate": 1.3006531347829699e-05,
1388
+ "loss": 1.4827,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 2.2,
1393
+ "learning_rate": 1.2697874271253844e-05,
1394
+ "loss": 1.5574,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 2.21,
1399
+ "learning_rate": 1.2392231240396542e-05,
1400
+ "loss": 1.5089,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 2.22,
1405
+ "learning_rate": 1.2089635997028592e-05,
1406
+ "loss": 1.5144,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 2.23,
1411
+ "learning_rate": 1.1790121946457212e-05,
1412
+ "loss": 1.5419,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 2.24,
1417
+ "learning_rate": 1.1493722153838239e-05,
1418
+ "loss": 1.4989,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 2.25,
1423
+ "learning_rate": 1.120046934052585e-05,
1424
+ "loss": 1.3389,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 2.26,
1429
+ "learning_rate": 1.0910395880460274e-05,
1430
+ "loss": 1.3874,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 2.27,
1435
+ "learning_rate": 1.062353379659383e-05,
1436
+ "loss": 1.4736,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 2.28,
1441
+ "learning_rate": 1.0339914757355718e-05,
1442
+ "loss": 1.4605,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 2.29,
1447
+ "learning_rate": 1.0059570073155953e-05,
1448
+ "loss": 1.5138,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 2.3,
1453
+ "learning_rate": 9.782530692928832e-06,
1454
+ "loss": 1.6038,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 2.31,
1459
+ "learning_rate": 9.508827200716273e-06,
1460
+ "loss": 1.5019,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 2.31,
1465
+ "learning_rate": 9.238489812291469e-06,
1466
+ "loss": 1.5379,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 2.32,
1471
+ "learning_rate": 8.971548371823205e-06,
1472
+ "loss": 1.5243,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 2.33,
1477
+ "learning_rate": 8.708032348581144e-06,
1478
+ "loss": 1.5579,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 2.34,
1483
+ "learning_rate": 8.447970833682584e-06,
1484
+ "loss": 1.5046,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 2.35,
1489
+ "learning_rate": 8.191392536880852e-06,
1490
+ "loss": 1.6327,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 2.36,
1495
+ "learning_rate": 7.938325783395924e-06,
1496
+ "loss": 1.5514,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 2.37,
1501
+ "learning_rate": 7.68879851078741e-06,
1502
+ "loss": 1.5497,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 2.38,
1507
+ "learning_rate": 7.442838265870347e-06,
1508
+ "loss": 1.4745,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 2.39,
1513
+ "learning_rate": 7.2004722016741605e-06,
1514
+ "loss": 1.4287,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 2.4,
1519
+ "learning_rate": 6.961727074445055e-06,
1520
+ "loss": 1.4907,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 2.41,
1525
+ "learning_rate": 6.726629240692255e-06,
1526
+ "loss": 1.5837,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 2.42,
1531
+ "learning_rate": 6.4952046542783395e-06,
1532
+ "loss": 1.4848,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 2.43,
1537
+ "learning_rate": 6.2674788635540415e-06,
1538
+ "loss": 1.4956,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 2.44,
1543
+ "learning_rate": 6.04347700853781e-06,
1544
+ "loss": 1.6193,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 2.45,
1549
+ "learning_rate": 5.823223818140458e-06,
1550
+ "loss": 1.5998,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 2.46,
1555
+ "learning_rate": 5.606743607435183e-06,
1556
+ "loss": 1.3808,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 2.47,
1561
+ "learning_rate": 5.394060274973267e-06,
1562
+ "loss": 1.5803,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 2.48,
1567
+ "learning_rate": 5.185197300145817e-06,
1568
+ "loss": 1.4914,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 2.49,
1573
+ "learning_rate": 4.980177740591678e-06,
1574
+ "loss": 1.6275,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 2.5,
1579
+ "learning_rate": 4.779024229652005e-06,
1580
+ "loss": 1.4997,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 2.51,
1585
+ "learning_rate": 4.581758973871609e-06,
1586
+ "loss": 1.5177,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 2.52,
1591
+ "learning_rate": 4.3884037505474455e-06,
1592
+ "loss": 1.4952,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 2.53,
1597
+ "learning_rate": 4.198979905324496e-06,
1598
+ "loss": 1.5149,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 2.54,
1603
+ "learning_rate": 4.0135083498392905e-06,
1604
+ "loss": 1.5135,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 2.55,
1609
+ "learning_rate": 3.832009559411338e-06,
1610
+ "loss": 1.3965,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 2.56,
1615
+ "learning_rate": 3.654503570782755e-06,
1616
+ "loss": 1.475,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 2.57,
1621
+ "learning_rate": 3.481009979906258e-06,
1622
+ "loss": 1.5149,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 2.58,
1627
+ "learning_rate": 3.311547939781887e-06,
1628
+ "loss": 1.4919,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 2.59,
1633
+ "learning_rate": 3.14613615834253e-06,
1634
+ "loss": 1.5341,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 2.6,
1639
+ "learning_rate": 2.9847928963887198e-06,
1640
+ "loss": 1.488,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 2.61,
1645
+ "learning_rate": 2.8275359655726586e-06,
1646
+ "loss": 1.656,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 2.62,
1651
+ "learning_rate": 2.6743827264319012e-06,
1652
+ "loss": 1.4234,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 2.62,
1657
+ "learning_rate": 2.5253500864728155e-06,
1658
+ "loss": 1.5116,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 2.63,
1663
+ "learning_rate": 2.3804544983040724e-06,
1664
+ "loss": 1.5428,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 2.64,
1669
+ "learning_rate": 2.23971195782033e-06,
1670
+ "loss": 1.5401,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 2.65,
1675
+ "learning_rate": 2.1031380024363645e-06,
1676
+ "loss": 1.5645,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 2.66,
1681
+ "learning_rate": 1.9707477093717786e-06,
1682
+ "loss": 1.5024,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 2.67,
1687
+ "learning_rate": 1.8425556939865696e-06,
1688
+ "loss": 1.5021,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 2.68,
1693
+ "learning_rate": 1.7185761081676222e-06,
1694
+ "loss": 1.5395,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 2.69,
1699
+ "learning_rate": 1.5988226387664151e-06,
1700
+ "loss": 1.58,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 2.7,
1705
+ "learning_rate": 1.4833085060880349e-06,
1706
+ "loss": 1.5174,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 2.71,
1711
+ "learning_rate": 1.3720464624317108e-06,
1712
+ "loss": 1.3706,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 2.72,
1717
+ "learning_rate": 1.2650487906830234e-06,
1718
+ "loss": 1.5043,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 2.73,
1723
+ "learning_rate": 1.1623273029579195e-06,
1724
+ "loss": 1.6115,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 2.74,
1729
+ "learning_rate": 1.063893339298674e-06,
1730
+ "loss": 1.5305,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 2.75,
1735
+ "learning_rate": 9.697577664220303e-07,
1736
+ "loss": 1.4947,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 2.76,
1741
+ "learning_rate": 8.799309765195452e-07,
1742
+ "loss": 1.5066,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 2.77,
1747
+ "learning_rate": 7.944228861103264e-07,
1748
+ "loss": 1.4353,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 2.78,
1753
+ "learning_rate": 7.132429349463011e-07,
1754
+ "loss": 1.4996,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 2.79,
1759
+ "learning_rate": 6.364000849700791e-07,
1760
+ "loss": 1.413,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 2.8,
1765
+ "learning_rate": 5.639028193256257e-07,
1766
+ "loss": 1.5256,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 2.81,
1771
+ "learning_rate": 4.957591414217344e-07,
1772
+ "loss": 1.4118,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 2.82,
1777
+ "learning_rate": 4.3197657404848935e-07,
1778
+ "loss": 1.522,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 2.83,
1783
+ "learning_rate": 3.725621585467698e-07,
1784
+ "loss": 1.4291,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 2.84,
1789
+ "learning_rate": 3.1752245403092963e-07,
1790
+ "loss": 1.5088,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 2.85,
1795
+ "learning_rate": 2.6686353666468323e-07,
1796
+ "loss": 1.3434,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 2.86,
1801
+ "learning_rate": 2.2059099899033098e-07,
1802
+ "loss": 1.5382,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 2.87,
1807
+ "learning_rate": 1.7870994931135977e-07,
1808
+ "loss": 1.5529,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 2.88,
1813
+ "learning_rate": 1.412250111285074e-07,
1814
+ "loss": 1.5875,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 2.89,
1819
+ "learning_rate": 1.0814032262935315e-07,
1820
+ "loss": 1.5579,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 2.9,
1825
+ "learning_rate": 7.945953623146096e-08,
1826
+ "loss": 1.3856,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 2.91,
1831
+ "learning_rate": 5.518581817918645e-08,
1832
+ "loss": 1.4034,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 2.92,
1837
+ "learning_rate": 3.532184819412532e-08,
1838
+ "loss": 1.6279,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 2.92,
1843
+ "learning_rate": 1.9869819179292315e-08,
1844
+ "loss": 1.4334,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 2.93,
1849
+ "learning_rate": 8.83143697702149e-09,
1850
+ "loss": 1.5431,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 2.94,
1855
+ "learning_rate": 2.2079201806501916e-09,
1856
+ "loss": 1.5198,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 2.95,
1861
+ "learning_rate": 0.0,
1862
+ "loss": 1.3548,
1863
+ "step": 309
1864
+ }
1865
+ ],
1866
+ "logging_steps": 1,
1867
+ "max_steps": 309,
1868
+ "num_train_epochs": 3,
1869
+ "save_steps": 500,
1870
+ "total_flos": 2.0671124708366746e+18,
1871
+ "trial_name": null,
1872
+ "trial_params": null
1873
+ }
checkpoint-309/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bedb4a76f95d260ade08f85bd50a2cddf7cfed301c3af564dd88bf3b862017b1
3
+ size 4539
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./models/yi-llama-34b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 7168,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 20480,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 56,
16
+ "num_hidden_layers": 60,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_type": "fp4",
23
+ "bnb_4bit_use_double_quant": false,
24
+ "llm_int8_enable_fp32_cpu_offload": false,
25
+ "llm_int8_has_fp16_weight": false,
26
+ "llm_int8_skip_modules": null,
27
+ "llm_int8_threshold": 6.0,
28
+ "load_in_4bit": false,
29
+ "load_in_8bit": true,
30
+ "quant_method": "bitsandbytes"
31
+ },
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 5000000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.34.1",
38
+ "use_cache": false,
39
+ "vocab_size": 64000
40
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|startoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<|startoftext|>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "<|endoftext|>",
33
+ "legacy": false,
34
+ "model_max_length": 4096,
35
+ "pad_token": "<unk>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "truncation_side": "right",
41
+ "trust_remote_code": false,
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }