--- base_model: microsoft/Phi-3-mini-128k-instruct library_name: peft license: mit tags: - llama-factory - lora - generated_from_trainer model-index: - name: PairRM-V2-phi3-3-mini-unified-feedback results: [] --- [Visualize in Weights & Biases](https://wandb.ai/dongfu/huggingface/runs/336nlkkc) # PairRM-V2-phi3-3-mini-unified-feedback This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the all dataset. It achieves the following results on the evaluation set: - Loss: 0.2755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3099 | 0.3245 | 500 | 0.3066 | | 0.3073 | 0.6490 | 1000 | 0.2901 | | 0.263 | 0.9736 | 1500 | 0.2846 | | 0.2822 | 1.2981 | 2000 | 0.2831 | | 0.2693 | 1.6226 | 2500 | 0.2787 | | 0.2741 | 1.9471 | 3000 | 0.2778 | | 0.2869 | 2.2716 | 3500 | 0.2762 | | 0.2339 | 2.5961 | 4000 | 0.2756 | | 0.2879 | 2.9207 | 4500 | 0.2755 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1