Dongjin-kr
commited on
Commit
โข
ea5de0e
1
Parent(s):
6290f79
Updated ReadMe
Browse files
README.md
CHANGED
@@ -1,3 +1,116 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- ko
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-classification
|
7 |
---
|
8 |
+
# Model Card for Model ID
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
13 |
+
|
14 |
+
<h1 align="center">Korean Reranker on AWS</h1>
|
15 |
+
<p align="center">
|
16 |
+
<a href="https://github.com/aws-samples">
|
17 |
+
<img alt="Build" src="https://img.shields.io/badge/Contribution-Welcome-blue">
|
18 |
+
</a>
|
19 |
+
<a href="https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/master/LICENSE">
|
20 |
+
<img alt="License" src="https://img.shields.io/badge/LICENSE-MIT-green">
|
21 |
+
</a>
|
22 |
+
<!-- <a href="https://huggingface.co/C-MTEB">
|
23 |
+
<img alt="Build" src="https://img.shields.io/badge/C_MTEB-๐ค-yellow">
|
24 |
+
</a> -->
|
25 |
+
<a href="https://github.com/aws-samples/aws-ai-ml-workshop-kr/tree/master/genai/aws-gen-ai-kr/30_fine_tune/reranker-kr">
|
26 |
+
<img alt="Build" src="https://img.shields.io/badge/KoReranker-1.0-red">
|
27 |
+
</a>
|
28 |
+
</p>
|
29 |
+
|
30 |
+
### **ํ๊ตญ์ด Reranker** ๊ฐ๋ฐ์ ์ํ ํ์ธํ๋ ๊ฐ์ด๋๋ฅผ ์ ์ํฉ๋๋ค.
|
31 |
+
ko-reranker๋ [BAAI/bge-reranker-larger](https://huggingface.co/BAAI/bge-reranker-large) ๊ธฐ๋ฐ ํ๊ตญ์ด ๋ฐ์ดํฐ์ ๋ํ fine-tuned model ์
๋๋ค.
|
32 |
+
|
33 |
+
- - -
|
34 |
+
|
35 |
+
## 0. Usage
|
36 |
+
- #### <span style="#FF69B4;"> Reranker๋ ์๋ฒ ๋ฉ ๋ชจ๋ธ๊ณผ ๋ฌ๋ฆฌ ์ง๋ฌธ๊ณผ ๋ฌธ์๋ฅผ ์
๋ ฅ์ผ๋ก ์ฌ์ฉํ๋ฉฐ ์๋ฒ ๋ฉ ๋์ ์ ์ฌ๋๋ฅผ ์ง์ ์ถ๋ ฅํฉ๋๋ค.</span>
|
37 |
+
- #### <span style="#FF69B4;"> Reranker์ ์ง๋ฌธ๊ณผ ๊ตฌ์ ์ ์
๋ ฅํ๋ฉด ์ฐ๊ด์ฑ ์ ์๋ฅผ ์ป์ ์ ์์ต๋๋ค.</span>
|
38 |
+
- #### <span style="#FF69B4;"> Reranker๋ CrossEntropy loss๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์ต์ ํ๋๋ฏ๋ก ๊ด๋ จ์ฑ ์ ์๊ฐ ํน์ ๋ฒ์์ ๊ตญํ๋์ง ์์ต๋๋ค.</span>
|
39 |
+
|
40 |
+
## 1. Backgound
|
41 |
+
- #### <span style="#FF69B4;"> **์ปจํ์คํธ ์์๊ฐ ์ ํ๋์ ์ํฅ ์ค๋ค**([Lost in Middel, *Liu et al., 2023*](https://arxiv.org/pdf/2307.03172.pdf)) </span>
|
42 |
+
|
43 |
+
- #### <span style="#FF69B4;"> [Reranker ์ฌ์ฉํด์ผ ํ๋ ์ด์ ](https://www.pinecone.io/learn/series/rag/rerankers/)</span>
|
44 |
+
- ํ์ฌ LLM์ context ๋ง์ด ๋ฃ๋๋ค๊ณ ์ข์๊ฑฐ ์๋, relevantํ๊ฒ ์์์ ์์ด์ผ ์ ๋ต์ ์ ๋งํด์ค๋ค
|
45 |
+
- Semantic search์์ ์ฌ์ฉํ๋ similarity(relevant) score๊ฐ ์ ๊ตํ์ง ์๋ค. (์ฆ, ์์ ๋ญ์ปค๋ฉด ํ์ ๋ญ์ปค๋ณด๋ค ํญ์ ๋ ์ง๋ฌธ์ ์ ์ฌํ ์ ๋ณด๊ฐ ๋ง์?)
|
46 |
+
* Embedding์ meaning behind document๋ฅผ ๊ฐ์ง๋ ๊ฒ์ ํนํ๋์ด ์๋ค.
|
47 |
+
* ์ง๋ฌธ๊ณผ ์ ๋ต์ด ์๋ฏธ์ ๊ฐ์๊ฑด ์๋๋ค. ([Hypothetical Document Embeddings](https://medium.com/prompt-engineering/hyde-revolutionising-search-with-hypothetical-document-embeddings-3474df795af8))
|
48 |
+
* ANNs([Approximate Nearest Neighbors](https://towardsdatascience.com/comprehensive-guide-to-approximate-nearest-neighbors-algorithms-8b94f057d6b6)) ์ฌ์ฉ์ ๋ฐ๋ฅธ ํจ๋ํฐ
|
49 |
+
|
50 |
+
- - -
|
51 |
+
|
52 |
+
## 2. Reranker models
|
53 |
+
|
54 |
+
- #### <span style="#FF69B4;"> [Cohere] [Reranker](https://txt.cohere.com/rerank/)</span>
|
55 |
+
- #### <span style="#FF69B4;"> [BAAI] [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large)</span>
|
56 |
+
- #### <span style="#FF69B4;"> [BAAI] [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base)</span>
|
57 |
+
|
58 |
+
- - -
|
59 |
+
|
60 |
+
## 3. Dataset
|
61 |
+
|
62 |
+
- #### <span style="#FF69B4;"> [msmarco-triplets](https://github.com/microsoft/MSMARCO-Passage-Ranking) </span>
|
63 |
+
- (Question, Answer, Negative)-Triplets from MS MARCO Passages dataset, 499,184 samples
|
64 |
+
- ํด๋น ๋ฐ์ดํฐ ์
์ ์๋ฌธ์ผ๋ก ๊ตฌ์ฑ๋์ด ์์ต๋๋ค.
|
65 |
+
- Amazon Translate ๊ธฐ๋ฐ์ผ๋ก ๋ฒ์ญํ์ฌ ํ์ฉํ์์ต๋๋ค.
|
66 |
+
|
67 |
+
- - -
|
68 |
+
|
69 |
+
## 4. Performance
|
70 |
+
| Model | has-right-in-contexts | mrr (mean reciprocal rank) |
|
71 |
+
|:---------------------------|:-----------------:|:--------------------------:|
|
72 |
+
| without-reranker (default)| 0.93 | 0.80 |
|
73 |
+
| with-reranker (bge-reranker-large)| 0.95 | 0.84 |
|
74 |
+
| **with-reranker (fine-tuned using korean)** | **0.96** | **0.87** |
|
75 |
+
|
76 |
+
- **evaluation set**:
|
77 |
+
```code
|
78 |
+
./dataset/evaluation/eval_dataset.csv
|
79 |
+
```
|
80 |
+
- **training parameters**:
|
81 |
+
|
82 |
+
```json
|
83 |
+
{
|
84 |
+
"learning_rate": 5e-6,
|
85 |
+
"fp16": True,
|
86 |
+
"num_train_epochs": 3,
|
87 |
+
"per_device_train_batch_size": 1,
|
88 |
+
"gradient_accumulation_steps": 32,
|
89 |
+
"train_group_size": 3,
|
90 |
+
"max_len": 512,
|
91 |
+
"weight_decay": 0.01,
|
92 |
+
}
|
93 |
+
```
|
94 |
+
|
95 |
+
- - -
|
96 |
+
|
97 |
+
## 5. Acknowledgement
|
98 |
+
- <span style="#FF69B4;"> Part of the code is developed based on [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master?tab=readme-ov-file) and [KoSimCSE-SageMaker](https://github.com/daekeun-ml/KoSimCSE-SageMaker/tree/7de6eefef8f1a646c664d0888319d17480a3ebe5).</span>
|
99 |
+
|
100 |
+
- - -
|
101 |
+
|
102 |
+
## 6. Citation
|
103 |
+
- <span style="#FF69B4;"> If you find this repository useful, please consider giving a star โญ and citation</span>
|
104 |
+
|
105 |
+
- - -
|
106 |
+
|
107 |
+
## 7. Contributors:
|
108 |
+
- <span style="#FF69B4;"> **Dongjin Jang, Ph.D.** (AWS AI/ML Specislist Solutions Architect) | [Mail](mailto:dongjinj@amazon.com) | [Linkedin](https://www.linkedin.com/in/dongjin-jang-kr/) | [Git](https://github.com/dongjin-ml) | </span>
|
109 |
+
|
110 |
+
- - -
|
111 |
+
|
112 |
+
## 8. License
|
113 |
+
- <span style="#FF69B4;"> FlagEmbedding is licensed under the [MIT License](https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/master/LICENSE). </span>
|
114 |
+
|
115 |
+
|
116 |
+
|