--- license: mit language: - ko - en pipeline_tag: text-classification --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).

Korean Reranker on AWS

Build License Build

### **ํ•œ๊ตญ์–ด Reranker** ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ํŒŒ์ธํŠœ๋‹ ๊ฐ€์ด๋“œ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ko-reranker๋Š” [BAAI/bge-reranker-larger](https://huggingface.co/BAAI/bge-reranker-large) ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ fine-tuned model ์ž…๋‹ˆ๋‹ค. - - - ## 0. Usage - #### Reranker๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ ์งˆ๋ฌธ๊ณผ ๋ฌธ์„œ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•˜๋ฉฐ ์ž„๋ฒ ๋”ฉ ๋Œ€์‹  ์œ ์‚ฌ๋„๋ฅผ ์ง์ ‘ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค. - #### Reranker์— ์งˆ๋ฌธ๊ณผ ๊ตฌ์ ˆ์„ ์ž…๋ ฅํ•˜๋ฉด ์—ฐ๊ด€์„ฑ ์ ์ˆ˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - #### Reranker๋Š” CrossEntropy loss๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ ํ™”๋˜๋ฏ€๋กœ ๊ด€๋ จ์„ฑ ์ ์ˆ˜๊ฐ€ ํŠน์ • ๋ฒ”์œ„์— ๊ตญํ•œ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ## 1. Backgound - #### **์ปจํƒ์ŠคํŠธ ์ˆœ์„œ๊ฐ€ ์ •ํ™•๋„์— ์˜ํ–ฅ ์ค€๋‹ค**([Lost in Middel, *Liu et al., 2023*](https://arxiv.org/pdf/2307.03172.pdf)) - #### [Reranker ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ](https://www.pinecone.io/learn/series/rag/rerankers/) - ํ˜„์žฌ LLM์€ context ๋งŽ์ด ๋„ฃ๋Š”๋‹ค๊ณ  ์ข‹์€๊ฑฐ ์•„๋‹˜, relevantํ•œ๊ฒŒ ์ƒ์œ„์— ์žˆ์–ด์•ผ ์ •๋‹ต์„ ์ž˜ ๋งํ•ด์ค€๋‹ค - Semantic search์—์„œ ์‚ฌ์šฉํ•˜๋Š” similarity(relevant) score๊ฐ€ ์ •๊ตํ•˜์ง€ ์•Š๋‹ค. (์ฆ‰, ์ƒ์œ„ ๋žญ์ปค๋ฉด ํ•˜์œ„ ๋žญ์ปค๋ณด๋‹ค ํ•ญ์ƒ ๋” ์งˆ๋ฌธ์— ์œ ์‚ฌํ•œ ์ •๋ณด๊ฐ€ ๋งž์•„?) * Embedding์€ meaning behind document๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์— ํŠนํ™”๋˜์–ด ์žˆ๋‹ค. * ์งˆ๋ฌธ๊ณผ ์ •๋‹ต์ด ์˜๋ฏธ์ƒ ๊ฐ™์€๊ฑด ์•„๋‹ˆ๋‹ค. ([Hypothetical Document Embeddings](https://medium.com/prompt-engineering/hyde-revolutionising-search-with-hypothetical-document-embeddings-3474df795af8)) * ANNs([Approximate Nearest Neighbors](https://towardsdatascience.com/comprehensive-guide-to-approximate-nearest-neighbors-algorithms-8b94f057d6b6)) ์‚ฌ์šฉ์— ๋”ฐ๋ฅธ ํŒจ๋„ํ‹ฐ - - - ## 2. Reranker models - #### [Cohere] [Reranker](https://txt.cohere.com/rerank/) - #### [BAAI] [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) - #### [BAAI] [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) - - - ## 3. Dataset - #### [msmarco-triplets](https://github.com/microsoft/MSMARCO-Passage-Ranking) - (Question, Answer, Negative)-Triplets from MS MARCO Passages dataset, 499,184 samples - ํ•ด๋‹น ๋ฐ์ดํ„ฐ ์…‹์€ ์˜๋ฌธ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. - Amazon Translate ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒˆ์—ญํ•˜์—ฌ ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. - - - ## 4. Performance | Model | has-right-in-contexts | mrr (mean reciprocal rank) | |:---------------------------|:-----------------:|:--------------------------:| | without-reranker (default)| 0.93 | 0.80 | | with-reranker (bge-reranker-large)| 0.95 | 0.84 | | **with-reranker (fine-tuned using korean)** | **0.96** | **0.87** | - **evaluation set**: ```code ./dataset/evaluation/eval_dataset.csv ``` - **training parameters**: ```json { "learning_rate": 5e-6, "fp16": True, "num_train_epochs": 3, "per_device_train_batch_size": 1, "gradient_accumulation_steps": 32, "train_group_size": 3, "max_len": 512, "weight_decay": 0.01, } ``` - - - ## 5. Acknowledgement - Part of the code is developed based on [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master?tab=readme-ov-file) and [KoSimCSE-SageMaker](https://github.com/daekeun-ml/KoSimCSE-SageMaker/tree/7de6eefef8f1a646c664d0888319d17480a3ebe5). - - - ## 6. Citation - If you find this repository useful, please consider giving a star โญ and citation - - - ## 7. Contributors: - **Dongjin Jang, Ph.D.** (AWS AI/ML Specislist Solutions Architect) | [Mail](mailto:dongjinj@amazon.com) | [Linkedin](https://www.linkedin.com/in/dongjin-jang-kr/) | [Git](https://github.com/dongjin-ml) | - - - ## 8. License - FlagEmbedding is licensed under the [MIT License](https://github.com/aws-samples/aws-ai-ml-workshop-kr/blob/master/LICENSE).