DouglasPontes's picture
End of training
d08961f verified
metadata
license: mit
base_model: cardiffnlp/twitter-roberta-base-2019-90m
tags:
  - generated_from_trainer
model-index:
  - name: 2020-Q2-75p-filtered-random
    results: []

2020-Q2-75p-filtered-random

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.07 8000 2.2326
2.407 0.13 16000 2.1532
2.407 0.2 24000 2.1195
2.23 0.27 32000 2.0944
2.23 0.34 40000 2.0626
2.1798 0.4 48000 2.0517
2.1798 0.47 56000 2.0355
2.1621 0.54 64000 2.0469
2.1621 0.61 72000 2.0306
2.1419 0.67 80000 2.0182
2.1419 0.74 88000 2.0107
2.1264 0.81 96000 2.0096
2.1264 0.88 104000 2.0104
2.1203 0.94 112000 2.0037
2.1203 1.01 120000 2.0078
2.1116 1.08 128000 1.9965
2.1116 1.15 136000 2.0025
2.1041 1.21 144000 1.9929
2.1041 1.28 152000 1.9870
2.1058 1.35 160000 1.9895
2.1058 1.41 168000 1.9795
2.1064 1.48 176000 1.9893
2.1064 1.55 184000 1.9877
2.098 1.62 192000 1.9920
2.098 1.68 200000 1.9801
2.0916 1.75 208000 1.9778
2.0916 1.82 216000 1.9745
2.0951 1.89 224000 1.9831
2.0951 1.95 232000 1.9749
2.092 2.02 240000 1.9754
2.092 2.09 248000 1.9794
2.0968 2.16 256000 1.9675
2.0968 2.22 264000 1.9710
2.0942 2.29 272000 1.9712
2.0942 2.36 280000 1.9662
2.0929 2.43 288000 1.9672
2.0929 2.49 296000 1.9830
2.092 2.56 304000 1.9804
2.092 2.63 312000 1.9661
2.0886 2.69 320000 1.9668
2.0886 2.76 328000 1.9643
2.0883 2.83 336000 1.9710
2.0883 2.9 344000 1.9678
2.0937 2.96 352000 1.9737
2.0937 3.03 360000 1.9638
2.0899 3.1 368000 1.9599
2.0899 3.17 376000 1.9570
2.0839 3.23 384000 1.9688
2.0839 3.3 392000 1.9613
2.0862 3.37 400000 1.9686
2.0862 3.44 408000 1.9690
2.0844 3.5 416000 1.9665
2.0844 3.57 424000 1.9512
2.0802 3.64 432000 1.9652
2.0802 3.71 440000 1.9594
2.0882 3.77 448000 1.9543
2.0882 3.84 456000 1.9635
2.0794 3.91 464000 1.9618
2.0794 3.97 472000 1.9617
2.0848 4.04 480000 1.9597
2.0848 4.11 488000 1.9586
2.0814 4.18 496000 1.9587
2.0814 4.24 504000 1.9510
2.0765 4.31 512000 1.9643
2.0765 4.38 520000 1.9586
2.0887 4.45 528000 1.9476
2.0887 4.51 536000 1.9539
2.0857 4.58 544000 1.9538
2.0857 4.65 552000 1.9528
2.0798 4.72 560000 1.9586
2.0798 4.78 568000 1.9660
2.0752 4.85 576000 1.9639
2.0752 4.92 584000 1.9505
2.0771 4.99 592000 1.9551
2.0771 5.05 600000 1.9495
2.0772 5.12 608000 1.9536
2.0772 5.19 616000 1.9567
2.0836 5.25 624000 1.9534
2.0836 5.32 632000 1.9663
2.0851 5.39 640000 1.9535
2.0851 5.46 648000 1.9554
2.0842 5.52 656000 1.9539
2.0842 5.59 664000 1.9589
2.088 5.66 672000 1.9572
2.088 5.73 680000 1.9603
2.075 5.79 688000 1.9639
2.075 5.86 696000 1.9537
2.077 5.93 704000 1.9612
2.077 6.0 712000 1.9571
2.0692 6.06 720000 1.9545
2.0692 6.13 728000 1.9494
2.087 6.2 736000 1.9555
2.087 6.27 744000 1.9566
2.0783 6.33 752000 1.9447
2.0783 6.4 760000 1.9518
2.0771 6.47 768000 1.9429
2.0771 6.53 776000 1.9603
2.0794 6.6 784000 1.9503
2.0794 6.67 792000 1.9572
2.0777 6.74 800000 1.9607
2.0777 6.8 808000 1.9525
2.0725 6.87 816000 1.9495
2.0725 6.94 824000 1.9517
2.0863 7.01 832000 1.9523
2.0863 7.07 840000 1.9441
2.0735 7.14 848000 1.9430
2.0735 7.21 856000 1.9517
2.0808 7.28 864000 1.9442
2.0808 7.34 872000 1.9414
2.0756 7.41 880000 1.9439
2.0756 7.48 888000 1.9428
2.0799 7.55 896000 1.9472
2.0799 7.61 904000 1.9426
2.0717 7.68 912000 1.9461
2.0717 7.75 920000 1.9583
2.0799 7.81 928000 1.9433
2.0799 7.88 936000 1.9442
2.0704 7.95 944000 1.9396
2.0704 8.02 952000 1.9409
2.0785 8.08 960000 1.9520
2.0785 8.15 968000 1.9409
2.0761 8.22 976000 1.9469
2.0761 8.29 984000 1.9372
2.0739 8.35 992000 1.9385
2.0739 8.42 1000000 1.9540
2.0761 8.49 1008000 1.9488
2.0761 8.56 1016000 1.9464
2.0725 8.62 1024000 1.9466
2.0725 8.69 1032000 1.9460
2.0704 8.76 1040000 1.9449
2.0704 8.83 1048000 1.9493
2.0734 8.89 1056000 1.9463
2.0734 8.96 1064000 1.9403
2.0744 9.03 1072000 1.9467
2.0744 9.09 1080000 1.9406
2.0776 9.16 1088000 1.9492
2.0776 9.23 1096000 1.9433
2.068 9.3 1104000 1.9450
2.068 9.36 1112000 1.9473
2.0755 9.43 1120000 1.9459
2.0755 9.5 1128000 1.9563
2.0783 9.57 1136000 1.9369
2.0783 9.63 1144000 1.9461
2.0776 9.7 1152000 1.9494
2.0776 9.77 1160000 1.9312
2.0757 9.84 1168000 1.9452
2.0757 9.9 1176000 1.9425
2.0776 9.97 1184000 1.9536
2.0776 10.04 1192000 1.9351
2.0769 10.11 1200000 1.9301
2.0769 10.17 1208000 1.9464
2.071 10.24 1216000 1.9410
2.071 10.31 1224000 1.9321
2.0702 10.37 1232000 1.9406
2.0702 10.44 1240000 1.9525
2.0716 10.51 1248000 1.9418
2.0716 10.58 1256000 1.9373
2.0753 10.64 1264000 1.9363
2.0753 10.71 1272000 1.9504
2.0757 10.78 1280000 1.9376
2.0757 10.85 1288000 1.9351
2.0656 10.91 1296000 1.9445
2.0656 10.98 1304000 1.9282
2.0732 11.05 1312000 1.9437
2.0732 11.12 1320000 1.9501
2.0756 11.18 1328000 1.9379
2.0756 11.25 1336000 1.9430
2.0885 11.32 1344000 1.9392
2.0885 11.39 1352000 1.9344
2.0758 11.45 1360000 1.9364
2.0758 11.52 1368000 1.9404
2.0693 11.59 1376000 1.9347
2.0693 11.65 1384000 1.9438
2.0675 11.72 1392000 1.9367
2.0675 11.79 1400000 1.9438
2.0731 11.86 1408000 1.9327
2.0731 11.92 1416000 1.9341
2.0774 11.99 1424000 1.9390
2.0774 12.06 1432000 1.9457
2.0738 12.13 1440000 1.9437
2.0738 12.19 1448000 1.9353
2.0667 12.26 1456000 1.9424
2.0667 12.33 1464000 1.9435
2.0674 12.4 1472000 1.9336
2.0674 12.46 1480000 1.9461
2.0704 12.53 1488000 1.9458
2.0704 12.6 1496000 1.9397
2.0691 12.67 1504000 1.9438
2.0691 12.73 1512000 1.9325
2.0727 12.8 1520000 1.9359
2.0727 12.87 1528000 1.9427
2.0715 12.93 1536000 1.9491
2.0715 13.0 1544000 1.9351
2.0692 13.07 1552000 1.9246
2.0692 13.14 1560000 1.9457
2.0711 13.2 1568000 1.9406
2.0711 13.27 1576000 1.9458
2.0735 13.34 1584000 1.9356
2.0735 13.41 1592000 1.9443
2.0707 13.47 1600000 1.9309
2.0707 13.54 1608000 1.9367
2.0776 13.61 1616000 1.9390
2.0776 13.68 1624000 1.9391
2.074 13.74 1632000 1.9459
2.074 13.81 1640000 1.9316
2.0681 13.88 1648000 1.9355
2.0681 13.95 1656000 1.9428
2.0671 14.01 1664000 1.9286
2.0671 14.08 1672000 1.9374
2.0672 14.15 1680000 1.9413
2.0672 14.21 1688000 1.9372
2.0675 14.28 1696000 1.9317
2.0675 14.35 1704000 1.9432
2.0665 14.42 1712000 1.9444
2.0665 14.48 1720000 1.9393
2.0645 14.55 1728000 1.9462
2.0645 14.62 1736000 1.9374
2.0712 14.69 1744000 1.9367
2.0712 14.75 1752000 1.9407
2.0689 14.82 1760000 1.9361
2.0689 14.89 1768000 1.9395
2.0657 14.96 1776000 1.9389
2.0657 15.02 1784000 1.9396
2.0781 15.09 1792000 1.9406
2.0781 15.16 1800000 1.9366
2.0631 15.23 1808000 1.9357
2.0631 15.29 1816000 1.9456
2.0738 15.36 1824000 1.9325
2.0738 15.43 1832000 1.9377
2.0726 15.49 1840000 1.9405
2.0726 15.56 1848000 1.9333
2.0699 15.63 1856000 1.9369
2.0699 15.7 1864000 1.9418
2.0764 15.76 1872000 1.9363
2.0764 15.83 1880000 1.9375
2.0779 15.9 1888000 1.9335
2.0779 15.97 1896000 1.9455
2.0693 16.03 1904000 1.9447
2.0693 16.1 1912000 1.9349
2.0716 16.17 1920000 1.9339
2.0716 16.24 1928000 1.9426
2.075 16.3 1936000 1.9439
2.075 16.37 1944000 1.9334
2.0751 16.44 1952000 1.9466
2.0751 16.51 1960000 1.9397
2.0734 16.57 1968000 1.9367
2.0734 16.64 1976000 1.9349
2.0685 16.71 1984000 1.9510
2.0685 16.77 1992000 1.9428
2.0706 16.84 2000000 1.9509
2.0706 16.91 2008000 1.9403
2.0716 16.98 2016000 1.9384
2.0716 17.04 2024000 1.9355
2.0741 17.11 2032000 1.9308
2.0741 17.18 2040000 1.9395
2.0714 17.25 2048000 1.9502
2.0714 17.31 2056000 1.9337
2.0696 17.38 2064000 1.9383
2.0696 17.45 2072000 1.9451
2.0729 17.52 2080000 1.9373
2.0729 17.58 2088000 1.9366
2.0716 17.65 2096000 1.9334
2.0716 17.72 2104000 1.9417
2.074 17.79 2112000 1.9408
2.074 17.85 2120000 1.9258
2.0745 17.92 2128000 1.9385
2.0745 17.99 2136000 1.9409
2.074 18.05 2144000 1.9342
2.074 18.12 2152000 1.9437
2.0666 18.19 2160000 1.9406
2.0666 18.26 2168000 1.9382
2.0657 18.32 2176000 1.9398
2.0657 18.39 2184000 1.9247
2.0692 18.46 2192000 1.9377
2.0692 18.53 2200000 1.9423
2.0726 18.59 2208000 1.9395
2.0726 18.66 2216000 1.9286
2.0688 18.73 2224000 1.9357
2.0688 18.8 2232000 1.9267
2.0732 18.86 2240000 1.9293
2.0732 18.93 2248000 1.9415
2.0697 19.0 2256000 1.9456
2.0697 19.07 2264000 1.9331
2.0747 19.13 2272000 1.9439
2.0747 19.2 2280000 1.9294
2.072 19.27 2288000 1.9305
2.072 19.33 2296000 1.9401
2.0609 19.4 2304000 1.9362
2.0609 19.47 2312000 1.9451
2.073 19.54 2320000 1.9352
2.073 19.6 2328000 1.9380
2.0793 19.67 2336000 1.9392
2.0793 19.74 2344000 1.9438
2.0787 19.81 2352000 1.9403
2.0787 19.87 2360000 1.9380
2.0694 19.94 2368000 1.9275
2.0694 20.01 2376000 1.9344
2.0649 20.08 2384000 1.9443
2.0649 20.14 2392000 1.9401
2.0727 20.21 2400000 1.9447

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0