DouglasPontes commited on
Commit
de5bd8c
1 Parent(s): 75078fd

Model save

Browse files
Files changed (2) hide show
  1. README.md +306 -304
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- base_model: DouglasPontes/2020-Q1-filtered_tweets
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
@@ -12,9 +13,9 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # 2020-Q2-75p-filtered
14
 
15
- This model is a fine-tuned version of [DouglasPontes/2020-Q1-filtered_tweets](https://huggingface.co/DouglasPontes/2020-Q1-filtered_tweets) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 2.2312
18
 
19
  ## Model description
20
 
@@ -33,318 +34,319 @@ More information needed
33
  ### Training hyperparameters
34
 
35
  The following hyperparameters were used during training:
36
- - learning_rate: 4.1e-07
37
  - train_batch_size: 16
38
  - eval_batch_size: 16
39
  - seed: 42
40
  - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
41
  - lr_scheduler_type: linear
 
42
  - training_steps: 2400000
43
 
44
  ### Training results
45
 
46
  | Training Loss | Epoch | Step | Validation Loss |
47
  |:-------------:|:-----:|:-------:|:---------------:|
48
- | No log | 0.02 | 8000 | 2.4865 |
49
- | 2.6592 | 0.04 | 16000 | 2.4598 |
50
- | 2.6592 | 0.07 | 24000 | 2.4472 |
51
- | 2.6211 | 0.09 | 32000 | 2.4341 |
52
- | 2.6211 | 0.11 | 40000 | 2.4223 |
53
- | 2.6048 | 0.13 | 48000 | 2.4217 |
54
- | 2.6048 | 0.16 | 56000 | 2.4184 |
55
- | 2.5861 | 0.18 | 64000 | 2.4062 |
56
- | 2.5861 | 0.2 | 72000 | 2.3919 |
57
- | 2.5736 | 0.22 | 80000 | 2.3896 |
58
- | 2.5736 | 0.25 | 88000 | 2.3951 |
59
- | 2.5559 | 0.27 | 96000 | 2.3903 |
60
- | 2.5559 | 0.29 | 104000 | 2.3836 |
61
- | 2.5551 | 0.31 | 112000 | 2.3749 |
62
- | 2.5551 | 0.34 | 120000 | 2.3794 |
63
- | 2.5371 | 0.36 | 128000 | 2.3733 |
64
- | 2.5371 | 0.38 | 136000 | 2.3703 |
65
- | 2.5417 | 0.4 | 144000 | 2.3662 |
66
- | 2.5417 | 0.43 | 152000 | 2.3728 |
67
- | 2.5316 | 0.45 | 160000 | 2.3643 |
68
- | 2.5316 | 0.47 | 168000 | 2.3568 |
69
- | 2.5296 | 0.49 | 176000 | 2.3555 |
70
- | 2.5296 | 0.52 | 184000 | 2.3506 |
71
- | 2.5215 | 0.54 | 192000 | 2.3482 |
72
- | 2.5215 | 0.56 | 200000 | 2.3514 |
73
- | 2.5274 | 0.58 | 208000 | 2.3531 |
74
- | 2.5274 | 0.61 | 216000 | 2.3463 |
75
- | 2.5215 | 0.63 | 224000 | 2.3470 |
76
- | 2.5215 | 0.65 | 232000 | 2.3407 |
77
- | 2.5096 | 0.67 | 240000 | 2.3400 |
78
- | 2.5096 | 0.7 | 248000 | 2.3402 |
79
- | 2.5176 | 0.72 | 256000 | 2.3308 |
80
- | 2.5176 | 0.74 | 264000 | 2.3342 |
81
- | 2.5048 | 0.76 | 272000 | 2.3333 |
82
- | 2.5048 | 0.79 | 280000 | 2.3288 |
83
- | 2.4979 | 0.81 | 288000 | 2.3298 |
84
- | 2.4979 | 0.83 | 296000 | 2.3237 |
85
- | 2.4963 | 0.85 | 304000 | 2.3266 |
86
- | 2.4963 | 0.88 | 312000 | 2.3197 |
87
- | 2.4972 | 0.9 | 320000 | 2.3271 |
88
- | 2.4972 | 0.92 | 328000 | 2.3275 |
89
- | 2.4969 | 0.94 | 336000 | 2.3210 |
90
- | 2.4969 | 0.97 | 344000 | 2.3222 |
91
- | 2.4961 | 0.99 | 352000 | 2.3242 |
92
- | 2.4961 | 1.01 | 360000 | 2.3155 |
93
- | 2.49 | 1.03 | 368000 | 2.3175 |
94
- | 2.49 | 1.06 | 376000 | 2.3076 |
95
- | 2.4847 | 1.08 | 384000 | 2.3138 |
96
- | 2.4847 | 1.1 | 392000 | 2.3183 |
97
- | 2.4767 | 1.12 | 400000 | 2.3118 |
98
- | 2.4767 | 1.15 | 408000 | 2.3152 |
99
- | 2.4788 | 1.17 | 416000 | 2.3089 |
100
- | 2.4788 | 1.19 | 424000 | 2.3051 |
101
- | 2.4738 | 1.21 | 432000 | 2.3102 |
102
- | 2.4738 | 1.24 | 440000 | 2.3069 |
103
- | 2.4635 | 1.26 | 448000 | 2.3004 |
104
- | 2.4635 | 1.28 | 456000 | 2.3066 |
105
- | 2.4828 | 1.3 | 464000 | 2.3078 |
106
- | 2.4828 | 1.32 | 472000 | 2.3072 |
107
- | 2.4675 | 1.35 | 480000 | 2.3073 |
108
- | 2.4675 | 1.37 | 488000 | 2.3014 |
109
- | 2.4676 | 1.39 | 496000 | 2.2987 |
110
- | 2.4676 | 1.41 | 504000 | 2.2988 |
111
- | 2.4678 | 1.44 | 512000 | 2.2971 |
112
- | 2.4678 | 1.46 | 520000 | 2.2969 |
113
- | 2.4634 | 1.48 | 528000 | 2.2990 |
114
- | 2.4634 | 1.5 | 536000 | 2.2869 |
115
- | 2.4657 | 1.53 | 544000 | 2.2936 |
116
- | 2.4657 | 1.55 | 552000 | 2.2915 |
117
- | 2.4607 | 1.57 | 560000 | 2.2903 |
118
- | 2.4607 | 1.59 | 568000 | 2.2934 |
119
- | 2.4558 | 1.62 | 576000 | 2.2845 |
120
- | 2.4558 | 1.64 | 584000 | 2.2897 |
121
- | 2.4662 | 1.66 | 592000 | 2.2928 |
122
- | 2.4662 | 1.68 | 600000 | 2.2861 |
123
- | 2.4658 | 1.71 | 608000 | 2.2883 |
124
- | 2.4658 | 1.73 | 616000 | 2.2878 |
125
- | 2.4533 | 1.75 | 624000 | 2.2892 |
126
- | 2.4533 | 1.77 | 632000 | 2.2886 |
127
- | 2.4575 | 1.8 | 640000 | 2.2894 |
128
- | 2.4575 | 1.82 | 648000 | 2.2871 |
129
- | 2.4565 | 1.84 | 656000 | 2.2798 |
130
- | 2.4565 | 1.86 | 664000 | 2.2877 |
131
- | 2.4548 | 1.89 | 672000 | 2.2859 |
132
- | 2.4548 | 1.91 | 680000 | 2.2787 |
133
- | 2.4507 | 1.93 | 688000 | 2.2780 |
134
- | 2.4507 | 1.95 | 696000 | 2.2826 |
135
- | 2.4455 | 1.98 | 704000 | 2.2838 |
136
- | 2.4455 | 2.0 | 712000 | 2.2764 |
137
- | 2.4516 | 2.02 | 720000 | 2.2814 |
138
- | 2.4516 | 2.04 | 728000 | 2.2807 |
139
- | 2.445 | 2.07 | 736000 | 2.2740 |
140
- | 2.445 | 2.09 | 744000 | 2.2780 |
141
- | 2.4466 | 2.11 | 752000 | 2.2775 |
142
- | 2.4466 | 2.13 | 760000 | 2.2783 |
143
- | 2.4476 | 2.16 | 768000 | 2.2763 |
144
- | 2.4476 | 2.18 | 776000 | 2.2737 |
145
- | 2.4449 | 2.2 | 784000 | 2.2753 |
146
- | 2.4449 | 2.22 | 792000 | 2.2762 |
147
- | 2.4424 | 2.25 | 800000 | 2.2767 |
148
- | 2.4424 | 2.27 | 808000 | 2.2702 |
149
- | 2.4528 | 2.29 | 816000 | 2.2655 |
150
- | 2.4528 | 2.31 | 824000 | 2.2727 |
151
- | 2.4523 | 2.34 | 832000 | 2.2733 |
152
- | 2.4523 | 2.36 | 840000 | 2.2654 |
153
- | 2.4395 | 2.38 | 848000 | 2.2674 |
154
- | 2.4395 | 2.4 | 856000 | 2.2754 |
155
- | 2.434 | 2.43 | 864000 | 2.2722 |
156
- | 2.434 | 2.45 | 872000 | 2.2666 |
157
- | 2.4407 | 2.47 | 880000 | 2.2656 |
158
- | 2.4407 | 2.49 | 888000 | 2.2654 |
159
- | 2.4352 | 2.52 | 896000 | 2.2630 |
160
- | 2.4352 | 2.54 | 904000 | 2.2662 |
161
- | 2.4393 | 2.56 | 912000 | 2.2692 |
162
- | 2.4393 | 2.58 | 920000 | 2.2558 |
163
- | 2.4378 | 2.61 | 928000 | 2.2619 |
164
- | 2.4378 | 2.63 | 936000 | 2.2614 |
165
- | 2.4392 | 2.65 | 944000 | 2.2578 |
166
- | 2.4392 | 2.67 | 952000 | 2.2672 |
167
- | 2.437 | 2.69 | 960000 | 2.2598 |
168
- | 2.437 | 2.72 | 968000 | 2.2633 |
169
- | 2.4388 | 2.74 | 976000 | 2.2566 |
170
- | 2.4388 | 2.76 | 984000 | 2.2551 |
171
- | 2.4386 | 2.78 | 992000 | 2.2606 |
172
- | 2.4386 | 2.81 | 1000000 | 2.2634 |
173
- | 2.4402 | 2.83 | 1008000 | 2.2641 |
174
- | 2.4402 | 2.85 | 1016000 | 2.2619 |
175
- | 2.4442 | 2.87 | 1024000 | 2.2584 |
176
- | 2.4442 | 2.9 | 1032000 | 2.2579 |
177
- | 2.4327 | 2.92 | 1040000 | 2.2523 |
178
- | 2.4327 | 2.94 | 1048000 | 2.2562 |
179
- | 2.4289 | 2.96 | 1056000 | 2.2593 |
180
- | 2.4289 | 2.99 | 1064000 | 2.2562 |
181
- | 2.4319 | 3.01 | 1072000 | 2.2536 |
182
- | 2.4319 | 3.03 | 1080000 | 2.2603 |
183
- | 2.4174 | 3.05 | 1088000 | 2.2549 |
184
- | 2.4174 | 3.08 | 1096000 | 2.2595 |
185
- | 2.4155 | 3.1 | 1104000 | 2.2555 |
186
- | 2.4155 | 3.12 | 1112000 | 2.2501 |
187
- | 2.427 | 3.14 | 1120000 | 2.2528 |
188
- | 2.427 | 3.17 | 1128000 | 2.2529 |
189
- | 2.4222 | 3.19 | 1136000 | 2.2536 |
190
- | 2.4222 | 3.21 | 1144000 | 2.2582 |
191
- | 2.4232 | 3.23 | 1152000 | 2.2522 |
192
- | 2.4232 | 3.26 | 1160000 | 2.2525 |
193
- | 2.4252 | 3.28 | 1168000 | 2.2538 |
194
- | 2.4252 | 3.3 | 1176000 | 2.2512 |
195
- | 2.4209 | 3.32 | 1184000 | 2.2557 |
196
- | 2.4209 | 3.35 | 1192000 | 2.2445 |
197
- | 2.4243 | 3.37 | 1200000 | 2.2570 |
198
- | 2.4243 | 3.39 | 1208000 | 2.2539 |
199
- | 2.4278 | 3.41 | 1216000 | 2.2514 |
200
- | 2.4278 | 3.44 | 1224000 | 2.2454 |
201
- | 2.4286 | 3.46 | 1232000 | 2.2463 |
202
- | 2.4286 | 3.48 | 1240000 | 2.2506 |
203
- | 2.4274 | 3.5 | 1248000 | 2.2427 |
204
- | 2.4274 | 3.53 | 1256000 | 2.2535 |
205
- | 2.4201 | 3.55 | 1264000 | 2.2517 |
206
- | 2.4201 | 3.57 | 1272000 | 2.2436 |
207
- | 2.4233 | 3.59 | 1280000 | 2.2430 |
208
- | 2.4233 | 3.62 | 1288000 | 2.2470 |
209
- | 2.4183 | 3.64 | 1296000 | 2.2446 |
210
- | 2.4183 | 3.66 | 1304000 | 2.2539 |
211
- | 2.428 | 3.68 | 1312000 | 2.2492 |
212
- | 2.428 | 3.71 | 1320000 | 2.2544 |
213
- | 2.4206 | 3.73 | 1328000 | 2.2478 |
214
- | 2.4206 | 3.75 | 1336000 | 2.2420 |
215
- | 2.4287 | 3.77 | 1344000 | 2.2442 |
216
- | 2.4287 | 3.8 | 1352000 | 2.2426 |
217
- | 2.4297 | 3.82 | 1360000 | 2.2426 |
218
- | 2.4297 | 3.84 | 1368000 | 2.2481 |
219
- | 2.4185 | 3.86 | 1376000 | 2.2449 |
220
- | 2.4185 | 3.89 | 1384000 | 2.2468 |
221
- | 2.4217 | 3.91 | 1392000 | 2.2467 |
222
- | 2.4217 | 3.93 | 1400000 | 2.2463 |
223
- | 2.4144 | 3.95 | 1408000 | 2.2482 |
224
- | 2.4144 | 3.97 | 1416000 | 2.2424 |
225
- | 2.4175 | 4.0 | 1424000 | 2.2415 |
226
- | 2.4175 | 4.02 | 1432000 | 2.2451 |
227
- | 2.4169 | 4.04 | 1440000 | 2.2443 |
228
- | 2.4169 | 4.06 | 1448000 | 2.2389 |
229
- | 2.4142 | 4.09 | 1456000 | 2.2377 |
230
- | 2.4142 | 4.11 | 1464000 | 2.2399 |
231
- | 2.4122 | 4.13 | 1472000 | 2.2447 |
232
- | 2.4122 | 4.15 | 1480000 | 2.2456 |
233
- | 2.4166 | 4.18 | 1488000 | 2.2451 |
234
- | 2.4166 | 4.2 | 1496000 | 2.2369 |
235
- | 2.4165 | 4.22 | 1504000 | 2.2426 |
236
- | 2.4165 | 4.24 | 1512000 | 2.2384 |
237
- | 2.4204 | 4.27 | 1520000 | 2.2454 |
238
- | 2.4204 | 4.29 | 1528000 | 2.2422 |
239
- | 2.4192 | 4.31 | 1536000 | 2.2423 |
240
- | 2.4192 | 4.33 | 1544000 | 2.2435 |
241
- | 2.4167 | 4.36 | 1552000 | 2.2451 |
242
- | 2.4167 | 4.38 | 1560000 | 2.2443 |
243
- | 2.4124 | 4.4 | 1568000 | 2.2430 |
244
- | 2.4124 | 4.42 | 1576000 | 2.2422 |
245
- | 2.406 | 4.45 | 1584000 | 2.2357 |
246
- | 2.406 | 4.47 | 1592000 | 2.2395 |
247
- | 2.4166 | 4.49 | 1600000 | 2.2378 |
248
- | 2.4166 | 4.51 | 1608000 | 2.2420 |
249
- | 2.4144 | 4.54 | 1616000 | 2.2402 |
250
- | 2.4144 | 4.56 | 1624000 | 2.2384 |
251
- | 2.4219 | 4.58 | 1632000 | 2.2438 |
252
- | 2.4219 | 4.6 | 1640000 | 2.2455 |
253
- | 2.4061 | 4.63 | 1648000 | 2.2397 |
254
- | 2.4061 | 4.65 | 1656000 | 2.2354 |
255
- | 2.411 | 4.67 | 1664000 | 2.2393 |
256
- | 2.411 | 4.69 | 1672000 | 2.2388 |
257
- | 2.4125 | 4.72 | 1680000 | 2.2406 |
258
- | 2.4125 | 4.74 | 1688000 | 2.2330 |
259
- | 2.4092 | 4.76 | 1696000 | 2.2336 |
260
- | 2.4092 | 4.78 | 1704000 | 2.2398 |
261
- | 2.4078 | 4.81 | 1712000 | 2.2368 |
262
- | 2.4078 | 4.83 | 1720000 | 2.2361 |
263
- | 2.4185 | 4.85 | 1728000 | 2.2378 |
264
- | 2.4185 | 4.87 | 1736000 | 2.2339 |
265
- | 2.4088 | 4.9 | 1744000 | 2.2366 |
266
- | 2.4088 | 4.92 | 1752000 | 2.2385 |
267
- | 2.4095 | 4.94 | 1760000 | 2.2337 |
268
- | 2.4095 | 4.96 | 1768000 | 2.2413 |
269
- | 2.4078 | 4.99 | 1776000 | 2.2377 |
270
- | 2.4078 | 5.01 | 1784000 | 2.2302 |
271
- | 2.4073 | 5.03 | 1792000 | 2.2357 |
272
- | 2.4073 | 5.05 | 1800000 | 2.2384 |
273
- | 2.4073 | 5.08 | 1808000 | 2.2322 |
274
- | 2.4073 | 5.1 | 1816000 | 2.2344 |
275
- | 2.4043 | 5.12 | 1824000 | 2.2327 |
276
- | 2.4043 | 5.14 | 1832000 | 2.2350 |
277
- | 2.4082 | 5.17 | 1840000 | 2.2376 |
278
- | 2.4082 | 5.19 | 1848000 | 2.2363 |
279
- | 2.4073 | 5.21 | 1856000 | 2.2323 |
280
- | 2.4073 | 5.23 | 1864000 | 2.2419 |
281
- | 2.4148 | 5.26 | 1872000 | 2.2293 |
282
- | 2.4148 | 5.28 | 1880000 | 2.2346 |
283
- | 2.4098 | 5.3 | 1888000 | 2.2372 |
284
- | 2.4098 | 5.32 | 1896000 | 2.2371 |
285
- | 2.407 | 5.34 | 1904000 | 2.2397 |
286
- | 2.407 | 5.37 | 1912000 | 2.2300 |
287
- | 2.4108 | 5.39 | 1920000 | 2.2317 |
288
- | 2.4108 | 5.41 | 1928000 | 2.2350 |
289
- | 2.4168 | 5.43 | 1936000 | 2.2343 |
290
- | 2.4168 | 5.46 | 1944000 | 2.2327 |
291
- | 2.4113 | 5.48 | 1952000 | 2.2363 |
292
- | 2.4113 | 5.5 | 1960000 | 2.2314 |
293
- | 2.4131 | 5.52 | 1968000 | 2.2303 |
294
- | 2.4131 | 5.55 | 1976000 | 2.2353 |
295
- | 2.4129 | 5.57 | 1984000 | 2.2353 |
296
- | 2.4129 | 5.59 | 1992000 | 2.2296 |
297
- | 2.4129 | 5.61 | 2000000 | 2.2314 |
298
- | 2.4129 | 5.64 | 2008000 | 2.2288 |
299
- | 2.4045 | 5.66 | 2016000 | 2.2347 |
300
- | 2.4045 | 5.68 | 2024000 | 2.2349 |
301
- | 2.4089 | 5.7 | 2032000 | 2.2310 |
302
- | 2.4089 | 5.73 | 2040000 | 2.2342 |
303
- | 2.4091 | 5.75 | 2048000 | 2.2320 |
304
- | 2.4091 | 5.77 | 2056000 | 2.2311 |
305
- | 2.4137 | 5.79 | 2064000 | 2.2278 |
306
- | 2.4137 | 5.82 | 2072000 | 2.2344 |
307
- | 2.4063 | 5.84 | 2080000 | 2.2339 |
308
- | 2.4063 | 5.86 | 2088000 | 2.2271 |
309
- | 2.4046 | 5.88 | 2096000 | 2.2263 |
310
- | 2.4046 | 5.91 | 2104000 | 2.2369 |
311
- | 2.4105 | 5.93 | 2112000 | 2.2330 |
312
- | 2.4105 | 5.95 | 2120000 | 2.2361 |
313
- | 2.4045 | 5.97 | 2128000 | 2.2320 |
314
- | 2.4045 | 6.0 | 2136000 | 2.2283 |
315
- | 2.4093 | 6.02 | 2144000 | 2.2262 |
316
- | 2.4093 | 6.04 | 2152000 | 2.2294 |
317
- | 2.4109 | 6.06 | 2160000 | 2.2334 |
318
- | 2.4109 | 6.09 | 2168000 | 2.2363 |
319
- | 2.4061 | 6.11 | 2176000 | 2.2309 |
320
- | 2.4061 | 6.13 | 2184000 | 2.2269 |
321
- | 2.4007 | 6.15 | 2192000 | 2.2369 |
322
- | 2.4007 | 6.18 | 2200000 | 2.2297 |
323
- | 2.4034 | 6.2 | 2208000 | 2.2267 |
324
- | 2.4034 | 6.22 | 2216000 | 2.2310 |
325
- | 2.4049 | 6.24 | 2224000 | 2.2362 |
326
- | 2.4049 | 6.27 | 2232000 | 2.2319 |
327
- | 2.4052 | 6.29 | 2240000 | 2.2308 |
328
- | 2.4052 | 6.31 | 2248000 | 2.2225 |
329
- | 2.4102 | 6.33 | 2256000 | 2.2366 |
330
- | 2.4102 | 6.36 | 2264000 | 2.2327 |
331
- | 2.4046 | 6.38 | 2272000 | 2.2305 |
332
- | 2.4046 | 6.4 | 2280000 | 2.2309 |
333
- | 2.4066 | 6.42 | 2288000 | 2.2291 |
334
- | 2.4066 | 6.45 | 2296000 | 2.2301 |
335
- | 2.4041 | 6.47 | 2304000 | 2.2378 |
336
- | 2.4041 | 6.49 | 2312000 | 2.2317 |
337
- | 2.4081 | 6.51 | 2320000 | 2.2326 |
338
- | 2.4081 | 6.54 | 2328000 | 2.2412 |
339
- | 2.4147 | 6.56 | 2336000 | 2.2349 |
340
- | 2.4147 | 6.58 | 2344000 | 2.2296 |
341
- | 2.4105 | 6.6 | 2352000 | 2.2313 |
342
- | 2.4105 | 6.62 | 2360000 | 2.2297 |
343
- | 2.4096 | 6.65 | 2368000 | 2.2241 |
344
- | 2.4096 | 6.67 | 2376000 | 2.2322 |
345
- | 2.4089 | 6.69 | 2384000 | 2.2344 |
346
- | 2.4089 | 6.71 | 2392000 | 2.2291 |
347
- | 2.4048 | 6.74 | 2400000 | 2.2274 |
348
 
349
 
350
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: cardiffnlp/twitter-roberta-base-2019-90m
4
  tags:
5
  - generated_from_trainer
6
  model-index:
 
13
 
14
  # 2020-Q2-75p-filtered
15
 
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 3.2425
19
 
20
  ## Model description
21
 
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
  - train_batch_size: 16
39
  - eval_batch_size: 16
40
  - seed: 42
41
  - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1400
44
  - training_steps: 2400000
45
 
46
  ### Training results
47
 
48
  | Training Loss | Epoch | Step | Validation Loss |
49
  |:-------------:|:-----:|:-------:|:---------------:|
50
+ | No log | 0.07 | 8000 | 3.1520 |
51
+ | 3.3704 | 0.13 | 16000 | 3.1286 |
52
+ | 3.3704 | 0.2 | 24000 | 3.1079 |
53
+ | 3.2908 | 0.27 | 32000 | 3.0845 |
54
+ | 3.2908 | 0.34 | 40000 | 3.0868 |
55
+ | 3.2742 | 0.4 | 48000 | 3.0768 |
56
+ | 3.2742 | 0.47 | 56000 | 3.0706 |
57
+ | 3.2579 | 0.54 | 64000 | 3.0621 |
58
+ | 3.2579 | 0.61 | 72000 | 3.0659 |
59
+ | 3.2448 | 0.67 | 80000 | 3.0457 |
60
+ | 3.2448 | 0.74 | 88000 | 3.0554 |
61
+ | 3.2416 | 0.81 | 96000 | 3.0335 |
62
+ | 3.2416 | 0.88 | 104000 | 3.0321 |
63
+ | 3.23 | 0.94 | 112000 | 3.0137 |
64
+ | 3.23 | 1.01 | 120000 | 3.0061 |
65
+ | 3.2084 | 1.08 | 128000 | 3.0251 |
66
+ | 3.2084 | 1.15 | 136000 | 3.0092 |
67
+ | 3.2055 | 1.21 | 144000 | 3.0043 |
68
+ | 3.2055 | 1.28 | 152000 | 3.0055 |
69
+ | 3.2026 | 1.35 | 160000 | 3.0066 |
70
+ | 3.2026 | 1.41 | 168000 | 3.0125 |
71
+ | 3.2069 | 1.48 | 176000 | 3.0032 |
72
+ | 3.2069 | 1.55 | 184000 | 2.9959 |
73
+ | 3.1904 | 1.62 | 192000 | 2.9960 |
74
+ | 3.1904 | 1.68 | 200000 | 3.0038 |
75
+ | 3.1989 | 1.75 | 208000 | 3.0016 |
76
+ | 3.1989 | 1.82 | 216000 | 3.0049 |
77
+ | 3.2113 | 1.89 | 224000 | 3.0086 |
78
+ | 3.2113 | 1.95 | 232000 | 3.0104 |
79
+ | 3.217 | 2.02 | 240000 | 3.0166 |
80
+ | 3.217 | 2.09 | 248000 | 3.0139 |
81
+ | 3.2029 | 2.16 | 256000 | 3.0217 |
82
+ | 3.2029 | 2.22 | 264000 | 3.0238 |
83
+ | 3.2226 | 2.29 | 272000 | 3.0234 |
84
+ | 3.2226 | 2.36 | 280000 | 3.0216 |
85
+ | 3.2199 | 2.43 | 288000 | 3.0175 |
86
+ | 3.2199 | 2.49 | 296000 | 3.0365 |
87
+ | 3.2254 | 2.56 | 304000 | 3.0282 |
88
+ | 3.2254 | 2.63 | 312000 | 3.0228 |
89
+ | 3.2349 | 2.7 | 320000 | 3.0205 |
90
+ | 3.2349 | 2.76 | 328000 | 3.0406 |
91
+ | 3.2424 | 2.83 | 336000 | 3.0307 |
92
+ | 3.2424 | 2.9 | 344000 | 3.0413 |
93
+ | 3.2347 | 2.96 | 352000 | 3.0401 |
94
+ | 3.2347 | 3.03 | 360000 | 3.0520 |
95
+ | 3.2476 | 3.1 | 368000 | 3.0489 |
96
+ | 3.2476 | 3.17 | 376000 | 3.0521 |
97
+ | 3.2506 | 3.23 | 384000 | 3.0685 |
98
+ | 3.2506 | 3.3 | 392000 | 3.0546 |
99
+ | 3.2547 | 3.37 | 400000 | 3.0542 |
100
+ | 3.2547 | 3.44 | 408000 | 3.0537 |
101
+ | 3.2519 | 3.5 | 416000 | 3.0588 |
102
+ | 3.2519 | 3.57 | 424000 | 3.0729 |
103
+ | 3.2679 | 3.64 | 432000 | 3.0842 |
104
+ | 3.2679 | 3.71 | 440000 | 3.0685 |
105
+ | 3.2656 | 3.77 | 448000 | 3.0942 |
106
+ | 3.2656 | 3.84 | 456000 | 3.0942 |
107
+ | 3.2908 | 3.91 | 464000 | 3.0918 |
108
+ | 3.2908 | 3.98 | 472000 | 3.0922 |
109
+ | 3.2944 | 4.04 | 480000 | 3.1093 |
110
+ | 3.2944 | 4.11 | 488000 | 3.1158 |
111
+ | 3.2917 | 4.18 | 496000 | 3.0997 |
112
+ | 3.2917 | 4.24 | 504000 | 3.1111 |
113
+ | 3.2916 | 4.31 | 512000 | 3.1133 |
114
+ | 3.2916 | 4.38 | 520000 | 3.1129 |
115
+ | 3.2836 | 4.45 | 528000 | 3.1134 |
116
+ | 3.2836 | 4.51 | 536000 | 3.1058 |
117
+ | 3.3068 | 4.58 | 544000 | 3.1211 |
118
+ | 3.3068 | 4.65 | 552000 | 3.0946 |
119
+ | 3.3026 | 4.72 | 560000 | 3.1079 |
120
+ | 3.3026 | 4.78 | 568000 | 3.1202 |
121
+ | 3.3078 | 4.85 | 576000 | 3.1155 |
122
+ | 3.3078 | 4.92 | 584000 | 3.1254 |
123
+ | 3.3168 | 4.99 | 592000 | 3.1279 |
124
+ | 3.3168 | 5.05 | 600000 | 3.1179 |
125
+ | 3.3113 | 5.12 | 608000 | 3.1277 |
126
+ | 3.3113 | 5.19 | 616000 | 3.1334 |
127
+ | 3.3102 | 5.26 | 624000 | 3.1233 |
128
+ | 3.3102 | 5.32 | 632000 | 3.1274 |
129
+ | 3.3235 | 5.39 | 640000 | 3.1434 |
130
+ | 3.3235 | 5.46 | 648000 | 3.1368 |
131
+ | 3.331 | 5.53 | 656000 | 3.1591 |
132
+ | 3.331 | 5.59 | 664000 | 3.1546 |
133
+ | 3.3308 | 5.66 | 672000 | 3.1663 |
134
+ | 3.3308 | 5.73 | 680000 | 3.1535 |
135
+ | 3.3396 | 5.79 | 688000 | 3.1558 |
136
+ | 3.3396 | 5.86 | 696000 | 3.1698 |
137
+ | 3.3558 | 5.93 | 704000 | 3.1651 |
138
+ | 3.3558 | 6.0 | 712000 | 3.1706 |
139
+ | 3.3474 | 6.06 | 720000 | 3.1942 |
140
+ | 3.3474 | 6.13 | 728000 | 3.1705 |
141
+ | 3.3513 | 6.2 | 736000 | 3.1834 |
142
+ | 3.3513 | 6.27 | 744000 | 3.1810 |
143
+ | 3.362 | 6.33 | 752000 | 3.1723 |
144
+ | 3.362 | 6.4 | 760000 | 3.1827 |
145
+ | 3.3694 | 6.47 | 768000 | 3.1937 |
146
+ | 3.3694 | 6.54 | 776000 | 3.2004 |
147
+ | 3.378 | 6.6 | 784000 | 3.2023 |
148
+ | 3.378 | 6.67 | 792000 | 3.1936 |
149
+ | 3.3703 | 6.74 | 800000 | 3.1948 |
150
+ | 3.3703 | 6.81 | 808000 | 3.2082 |
151
+ | 3.3838 | 6.87 | 816000 | 3.1974 |
152
+ | 3.3838 | 6.94 | 824000 | 3.2029 |
153
+ | 3.3871 | 7.01 | 832000 | 3.2160 |
154
+ | 3.3871 | 7.07 | 840000 | 3.2198 |
155
+ | 3.3839 | 7.14 | 848000 | 3.2190 |
156
+ | 3.3839 | 7.21 | 856000 | 3.2204 |
157
+ | 3.389 | 7.28 | 864000 | 3.2188 |
158
+ | 3.389 | 7.34 | 872000 | 3.2246 |
159
+ | 3.398 | 7.41 | 880000 | 3.2333 |
160
+ | 3.398 | 7.48 | 888000 | 3.2168 |
161
+ | 3.4001 | 7.55 | 896000 | 3.2311 |
162
+ | 3.4001 | 7.61 | 904000 | 3.2390 |
163
+ | 3.4255 | 7.68 | 912000 | 3.2447 |
164
+ | 3.4255 | 7.75 | 920000 | 3.2546 |
165
+ | 3.4218 | 7.82 | 928000 | 3.2510 |
166
+ | 3.4218 | 7.88 | 936000 | 3.2433 |
167
+ | 3.4326 | 7.95 | 944000 | 3.2509 |
168
+ | 3.4326 | 8.02 | 952000 | 3.2573 |
169
+ | 3.4268 | 8.09 | 960000 | 3.2499 |
170
+ | 3.4268 | 8.15 | 968000 | 3.2704 |
171
+ | 3.4165 | 8.22 | 976000 | 3.2579 |
172
+ | 3.4165 | 8.29 | 984000 | 3.2669 |
173
+ | 3.4425 | 8.36 | 992000 | 3.2723 |
174
+ | 3.4425 | 8.42 | 1000000 | 3.2718 |
175
+ | 3.4433 | 8.49 | 1008000 | 3.2655 |
176
+ | 3.4433 | 8.56 | 1016000 | 3.2794 |
177
+ | 3.4437 | 8.62 | 1024000 | 3.2808 |
178
+ | 3.4437 | 8.69 | 1032000 | 3.2731 |
179
+ | 3.4499 | 8.76 | 1040000 | 3.2785 |
180
+ | 3.4499 | 8.83 | 1048000 | 3.2823 |
181
+ | 3.4593 | 8.89 | 1056000 | 3.2844 |
182
+ | 3.4593 | 8.96 | 1064000 | 3.2877 |
183
+ | 3.4481 | 9.03 | 1072000 | 3.2969 |
184
+ | 3.4481 | 9.1 | 1080000 | 3.2870 |
185
+ | 3.4542 | 9.16 | 1088000 | 3.2946 |
186
+ | 3.4542 | 9.23 | 1096000 | 3.2901 |
187
+ | 3.4547 | 9.3 | 1104000 | 3.2813 |
188
+ | 3.4547 | 9.37 | 1112000 | 3.2910 |
189
+ | 3.4618 | 9.43 | 1120000 | 3.2978 |
190
+ | 3.4618 | 9.5 | 1128000 | 3.3055 |
191
+ | 3.46 | 9.57 | 1136000 | 3.2885 |
192
+ | 3.46 | 9.64 | 1144000 | 3.2871 |
193
+ | 3.4572 | 9.7 | 1152000 | 3.2905 |
194
+ | 3.4572 | 9.77 | 1160000 | 3.3006 |
195
+ | 3.4597 | 9.84 | 1168000 | 3.3081 |
196
+ | 3.4597 | 9.9 | 1176000 | 3.3031 |
197
+ | 3.4651 | 9.97 | 1184000 | 3.2883 |
198
+ | 3.4651 | 10.04 | 1192000 | 3.3189 |
199
+ | 3.4571 | 10.11 | 1200000 | 3.2978 |
200
+ | 3.4571 | 10.17 | 1208000 | 3.3091 |
201
+ | 3.4567 | 10.24 | 1216000 | 3.2755 |
202
+ | 3.4567 | 10.31 | 1224000 | 3.2968 |
203
+ | 3.4584 | 10.38 | 1232000 | 3.2991 |
204
+ | 3.4584 | 10.44 | 1240000 | 3.2818 |
205
+ | 3.4459 | 10.51 | 1248000 | 3.2823 |
206
+ | 3.4459 | 10.58 | 1256000 | 3.2800 |
207
+ | 3.4474 | 10.65 | 1264000 | 3.2856 |
208
+ | 3.4474 | 10.71 | 1272000 | 3.2845 |
209
+ | 3.4383 | 10.78 | 1280000 | 3.2804 |
210
+ | 3.4383 | 10.85 | 1288000 | 3.2707 |
211
+ | 3.4496 | 10.92 | 1296000 | 3.2824 |
212
+ | 3.4496 | 10.98 | 1304000 | 3.2765 |
213
+ | 3.4411 | 11.05 | 1312000 | 3.2838 |
214
+ | 3.4411 | 11.12 | 1320000 | 3.2839 |
215
+ | 3.4305 | 11.19 | 1328000 | 3.2748 |
216
+ | 3.4305 | 11.25 | 1336000 | 3.2821 |
217
+ | 3.4258 | 11.32 | 1344000 | 3.2746 |
218
+ | 3.4258 | 11.39 | 1352000 | 3.2861 |
219
+ | 3.4227 | 11.45 | 1360000 | 3.2710 |
220
+ | 3.4227 | 11.52 | 1368000 | 3.2788 |
221
+ | 3.4319 | 11.59 | 1376000 | 3.2794 |
222
+ | 3.4319 | 11.66 | 1384000 | 3.2766 |
223
+ | 3.436 | 11.72 | 1392000 | 3.2924 |
224
+ | 3.436 | 11.79 | 1400000 | 3.2812 |
225
+ | 3.4368 | 11.86 | 1408000 | 3.2851 |
226
+ | 3.4368 | 11.93 | 1416000 | 3.2822 |
227
+ | 3.4346 | 11.99 | 1424000 | 3.2657 |
228
+ | 3.4346 | 12.06 | 1432000 | 3.2748 |
229
+ | 3.4265 | 12.13 | 1440000 | 3.2685 |
230
+ | 3.4265 | 12.2 | 1448000 | 3.2947 |
231
+ | 3.4306 | 12.26 | 1456000 | 3.2841 |
232
+ | 3.4306 | 12.33 | 1464000 | 3.2748 |
233
+ | 3.4254 | 12.4 | 1472000 | 3.2794 |
234
+ | 3.4254 | 12.47 | 1480000 | 3.2774 |
235
+ | 3.4353 | 12.53 | 1488000 | 3.2726 |
236
+ | 3.4353 | 12.6 | 1496000 | 3.2763 |
237
+ | 3.4358 | 12.67 | 1504000 | 3.2659 |
238
+ | 3.4358 | 12.73 | 1512000 | 3.2710 |
239
+ | 3.4182 | 12.8 | 1520000 | 3.2777 |
240
+ | 3.4182 | 12.87 | 1528000 | 3.2824 |
241
+ | 3.4384 | 12.94 | 1536000 | 3.2887 |
242
+ | 3.4384 | 13.0 | 1544000 | 3.2667 |
243
+ | 3.4287 | 13.07 | 1552000 | 3.2713 |
244
+ | 3.4287 | 13.14 | 1560000 | 3.2640 |
245
+ | 3.4181 | 13.21 | 1568000 | 3.2607 |
246
+ | 3.4181 | 13.27 | 1576000 | 3.2643 |
247
+ | 3.4173 | 13.34 | 1584000 | 3.2630 |
248
+ | 3.4173 | 13.41 | 1592000 | 3.2572 |
249
+ | 3.4214 | 13.48 | 1600000 | 3.2728 |
250
+ | 3.4214 | 13.54 | 1608000 | 3.2822 |
251
+ | 3.4223 | 13.61 | 1616000 | 3.2704 |
252
+ | 3.4223 | 13.68 | 1624000 | 3.2634 |
253
+ | 3.417 | 13.75 | 1632000 | 3.2691 |
254
+ | 3.417 | 13.81 | 1640000 | 3.2550 |
255
+ | 3.4146 | 13.88 | 1648000 | 3.2529 |
256
+ | 3.4146 | 13.95 | 1656000 | 3.2713 |
257
+ | 3.4186 | 14.02 | 1664000 | 3.2672 |
258
+ | 3.4186 | 14.08 | 1672000 | 3.2542 |
259
+ | 3.4082 | 14.15 | 1680000 | 3.2576 |
260
+ | 3.4082 | 14.22 | 1688000 | 3.2680 |
261
+ | 3.4186 | 14.28 | 1696000 | 3.2667 |
262
+ | 3.4186 | 14.35 | 1704000 | 3.2694 |
263
+ | 3.4131 | 14.42 | 1712000 | 3.2606 |
264
+ | 3.4131 | 14.49 | 1720000 | 3.2622 |
265
+ | 3.4239 | 14.55 | 1728000 | 3.2678 |
266
+ | 3.4239 | 14.62 | 1736000 | 3.2708 |
267
+ | 3.4197 | 14.69 | 1744000 | 3.2622 |
268
+ | 3.4197 | 14.76 | 1752000 | 3.2605 |
269
+ | 3.4073 | 14.82 | 1760000 | 3.2647 |
270
+ | 3.4073 | 14.89 | 1768000 | 3.2619 |
271
+ | 3.4167 | 14.96 | 1776000 | 3.2816 |
272
+ | 3.4167 | 15.03 | 1784000 | 3.2603 |
273
+ | 3.413 | 15.09 | 1792000 | 3.2661 |
274
+ | 3.413 | 15.16 | 1800000 | 3.2589 |
275
+ | 3.4117 | 15.23 | 1808000 | 3.2688 |
276
+ | 3.4117 | 15.3 | 1816000 | 3.2678 |
277
+ | 3.4103 | 15.36 | 1824000 | 3.2661 |
278
+ | 3.4103 | 15.43 | 1832000 | 3.2705 |
279
+ | 3.4074 | 15.5 | 1840000 | 3.2670 |
280
+ | 3.4074 | 15.56 | 1848000 | 3.2619 |
281
+ | 3.4167 | 15.63 | 1856000 | 3.2624 |
282
+ | 3.4167 | 15.7 | 1864000 | 3.2552 |
283
+ | 3.4195 | 15.77 | 1872000 | 3.2503 |
284
+ | 3.4195 | 15.83 | 1880000 | 3.2606 |
285
+ | 3.4091 | 15.9 | 1888000 | 3.2812 |
286
+ | 3.4091 | 15.97 | 1896000 | 3.2837 |
287
+ | 3.4116 | 16.04 | 1904000 | 3.2658 |
288
+ | 3.4116 | 16.1 | 1912000 | 3.2676 |
289
+ | 3.4183 | 16.17 | 1920000 | 3.2770 |
290
+ | 3.4183 | 16.24 | 1928000 | 3.2756 |
291
+ | 3.4177 | 16.31 | 1936000 | 3.2876 |
292
+ | 3.4177 | 16.37 | 1944000 | 3.2612 |
293
+ | 3.4226 | 16.44 | 1952000 | 3.2748 |
294
+ | 3.4226 | 16.51 | 1960000 | 3.2679 |
295
+ | 3.4154 | 16.58 | 1968000 | 3.2659 |
296
+ | 3.4154 | 16.64 | 1976000 | 3.2689 |
297
+ | 3.4199 | 16.71 | 1984000 | 3.2701 |
298
+ | 3.4199 | 16.78 | 1992000 | 3.2564 |
299
+ | 3.4166 | 16.85 | 2000000 | 3.2714 |
300
+ | 3.4166 | 16.91 | 2008000 | 3.2738 |
301
+ | 3.4054 | 16.98 | 2016000 | 3.2633 |
302
+ | 3.4054 | 17.05 | 2024000 | 3.2574 |
303
+ | 3.4022 | 17.11 | 2032000 | 3.2637 |
304
+ | 3.4022 | 17.18 | 2040000 | 3.2688 |
305
+ | 3.408 | 17.25 | 2048000 | 3.2667 |
306
+ | 3.408 | 17.32 | 2056000 | 3.2578 |
307
+ | 3.4065 | 17.38 | 2064000 | 3.2605 |
308
+ | 3.4065 | 17.45 | 2072000 | 3.2768 |
309
+ | 3.4105 | 17.52 | 2080000 | 3.2569 |
310
+ | 3.4105 | 17.59 | 2088000 | 3.2519 |
311
+ | 3.4011 | 17.65 | 2096000 | 3.2555 |
312
+ | 3.4011 | 17.72 | 2104000 | 3.2488 |
313
+ | 3.4078 | 17.79 | 2112000 | 3.2516 |
314
+ | 3.4078 | 17.86 | 2120000 | 3.2527 |
315
+ | 3.4105 | 17.92 | 2128000 | 3.2561 |
316
+ | 3.4105 | 17.99 | 2136000 | 3.2580 |
317
+ | 3.4054 | 18.06 | 2144000 | 3.2453 |
318
+ | 3.4054 | 18.13 | 2152000 | 3.2426 |
319
+ | 3.3937 | 18.19 | 2160000 | 3.2517 |
320
+ | 3.3937 | 18.26 | 2168000 | 3.2446 |
321
+ | 3.4001 | 18.33 | 2176000 | 3.2449 |
322
+ | 3.4001 | 18.39 | 2184000 | 3.2527 |
323
+ | 3.413 | 18.46 | 2192000 | 3.2557 |
324
+ | 3.413 | 18.53 | 2200000 | 3.2483 |
325
+ | 3.3882 | 18.6 | 2208000 | 3.2520 |
326
+ | 3.3882 | 18.66 | 2216000 | 3.2354 |
327
+ | 3.3974 | 18.73 | 2224000 | 3.2540 |
328
+ | 3.3974 | 18.8 | 2232000 | 3.2426 |
329
+ | 3.3864 | 18.87 | 2240000 | 3.2341 |
330
+ | 3.3864 | 18.93 | 2248000 | 3.2408 |
331
+ | 3.3896 | 19.0 | 2256000 | 3.2342 |
332
+ | 3.3896 | 19.07 | 2264000 | 3.2415 |
333
+ | 3.3845 | 19.14 | 2272000 | 3.2445 |
334
+ | 3.3845 | 19.2 | 2280000 | 3.2422 |
335
+ | 3.3916 | 19.27 | 2288000 | 3.2379 |
336
+ | 3.3916 | 19.34 | 2296000 | 3.2411 |
337
+ | 3.3919 | 19.41 | 2304000 | 3.2429 |
338
+ | 3.3919 | 19.47 | 2312000 | 3.2372 |
339
+ | 3.39 | 19.54 | 2320000 | 3.2380 |
340
+ | 3.39 | 19.61 | 2328000 | 3.2353 |
341
+ | 3.3905 | 19.68 | 2336000 | 3.2327 |
342
+ | 3.3905 | 19.74 | 2344000 | 3.2494 |
343
+ | 3.3826 | 19.81 | 2352000 | 3.2369 |
344
+ | 3.3826 | 19.88 | 2360000 | 3.2390 |
345
+ | 3.3935 | 19.94 | 2368000 | 3.2415 |
346
+ | 3.3935 | 20.01 | 2376000 | 3.2486 |
347
+ | 3.3846 | 20.08 | 2384000 | 3.2354 |
348
+ | 3.3846 | 20.15 | 2392000 | 3.2466 |
349
+ | 3.3875 | 20.21 | 2400000 | 3.2425 |
350
 
351
 
352
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f68d2299513f7369cd269a251ec47ab959df5e6bb7f026849ed21fe05070b870
3
  size 498859189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fe5c42e4fb64daf8be9a674ba0a462a12332dee802c9d77c497d672d20d34b5
3
  size 498859189