DouglasPontes commited on
Commit
5fde48d
·
1 Parent(s): 5f38b21

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.77 +/- 37.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77e67c6af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77e67c6b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77e67c6c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77e67c6ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f77e67c6d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f77e67c6dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f77e67c6e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77e67c6ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77e67c6f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77e67ca040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77e67ca0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77e67ca160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f77e67c4360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 901120, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673740007454116479, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ9N73vOFU98oNjPYORRb6kw3s7c/H/PQAAAAAAAAAAzUKTvD2KVLmz7sY3T+PJMnhSGDsG+fK2AACAPwAAgD8zW8y8ey6Zuv3lzDtl8s83QRa2OtU6MDYAAIA/AACAP6bm9T17Epq6gSkmt04rEDNTxY+74to+NgAAgD8AAIA/jS4oPj1jDjye2xE7cVLtOAzrnz3E7zu6AACAPwAAgD8tQW8+Cj53PJacPDs0I4Y5McsHPi0paLoAAIA/AACAP3PqOj4FcNQ8Y3zZOQBqlzivh2o+6qovuQAAgD8AAIA/UD2IPq5s17yOwRW7qwKKOV6TOr7izTs6AACAPwAAgD/aPqe99lRIumihT7oLHmg2d/o9u7uJcjkAAIA/AACAP0o2qz4IwV4/q4bUPdYDqb6XgxE+3jRIvAAAAAAAAAAA7d9qPmc0LT8VYOU8f7qzvto78jznwZG9AAAAAAAAAAAmWJi9j3opuvjcBTzTFpE29koEO3uiiDUAAIA/AACAPwD1Bj3s4e+5gmnIuv8NQrZK3IU7rh3tOQAAgD8AAIA/Y++zPmRAKD7L0Hm+nSaRviDjcrxQiOy8AAAAAAAAAABaNuU9w5Efug46oDgzEzkzMlm5OYjMuLcAAIA/AACAPwNiwz4aHxc/ht7CO/Njj77V+N89xNQUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvASnPpC/YUCUhpRSlIwBbJRN6AOMAXSUR0CLfF/x2B8QdX2UKGgGaAloD0MI8RKc+sCCYUCUhpRSlGgVTegDaBZHQIt/Ec+7lJZ1fZQoaAZoCWgPQwivJHmu75llQJSGlFKUaBVN6ANoFkdAi4gxBNVR13V9lChoBmgJaA9DCEUOETen3WZAlIaUUpRoFU3oA2gWR0CLjzhuwX67dX2UKGgGaAloD0MIUmNCzCVmYkCUhpRSlGgVTegDaBZHQIuqIVsUIs11fZQoaAZoCWgPQwjhlo+kpJVWQJSGlFKUaBVN6ANoFkdAi7iys0YTCnV9lChoBmgJaA9DCD8buW7KkGRAlIaUUpRoFU3oA2gWR0CLvFGDL8rJdX2UKGgGaAloD0MIChNGs7KtY0CUhpRSlGgVTegDaBZHQIvFoprk8zR1fZQoaAZoCWgPQwizCTAsf4deQJSGlFKUaBVN6ANoFkdAi+7+2mYShHV9lChoBmgJaA9DCCi2gqYlcF9AlIaUUpRoFU3oA2gWR0CL+scLBsQ/dX2UKGgGaAloD0MIjUXT2UnkZUCUhpRSlGgVTegDaBZHQIv/ufChvit1fZQoaAZoCWgPQwii68IPTp1vQJSGlFKUaBVNqgJoFkdAjAPnq/ub7XV9lChoBmgJaA9DCBrdQexMQXFAlIaUUpRoFU0eAWgWR0CMBd7MxGlRdX2UKGgGaAloD0MI6SgHswmIcECUhpRSlGgVTcoBaBZHQIwJ3Qrtmcx1fZQoaAZoCWgPQwhLHk/LD1dmQJSGlFKUaBVN6ANoFkdAjAzdpRGc4HV9lChoBmgJaA9DCPRvl/26e19AlIaUUpRoFU3oA2gWR0CMDtXZoPCmdX2UKGgGaAloD0MIVaLsLWVzZ0CUhpRSlGgVTegDaBZHQIwPO8Gs3hp1fZQoaAZoCWgPQwiGcMyyp0lnQJSGlFKUaBVN6ANoFkdAjBOp5eJHiHV9lChoBmgJaA9DCLDo1mt6WGdAlIaUUpRoFU3oA2gWR0CMFK6JZW7wdX2UKGgGaAloD0MIN3AH6hQAYUCUhpRSlGgVTegDaBZHQIwWueFtbcJ1fZQoaAZoCWgPQwjDRe7patFiQJSGlFKUaBVN6ANoFkdAjBjCDM/yG3V9lChoBmgJaA9DCE+w/zo3lUFAlIaUUpRoFUv5aBZHQIwbrASFoL51fZQoaAZoCWgPQwjXUdUEUedIQJSGlFKUaBVL9WgWR0CMIy371qWUdX2UKGgGaAloD0MIEjElkmjgbkCUhpRSlGgVTS8BaBZHQIwjrv5P/Jh1fZQoaAZoCWgPQwj430p2bGthQJSGlFKUaBVN6ANoFkdAjCYw+t8uz3V9lChoBmgJaA9DCD6zJEBNq29AlIaUUpRoFU1AAWgWR0CMMY6zVtoBdX2UKGgGaAloD0MIx4FXyx3Na0CUhpRSlGgVTSYDaBZHQIxCQKMNtqJ1fZQoaAZoCWgPQwgsRfKVQPViQJSGlFKUaBVN6ANoFkdAjEuaSs8xK3V9lChoBmgJaA9DCPIHA8+982BAlIaUUpRoFU3oA2gWR0CMWLVoYekpdX2UKGgGaAloD0MIaHizBm8WZkCUhpRSlGgVTegDaBZHQIyQmHHmzSl1fZQoaAZoCWgPQwjH1F3ZBa1jQJSGlFKUaBVN6ANoFkdAjJYIRywOfHV9lChoBmgJaA9DCM8Qjln2cGVAlIaUUpRoFU3oA2gWR0CMmn6yB06pdX2UKGgGaAloD0MIs3qH26FAX0CUhpRSlGgVTegDaBZHQIykxVsDW9V1fZQoaAZoCWgPQwgL1c3F31haQJSGlFKUaBVN6ANoFkdAjKc0pEx7A3V9lChoBmgJaA9DCBgip69nAmBAlIaUUpRoFU3oA2gWR0CMrb6KLsKLdX2UKGgGaAloD0MI9Q63Q8PRbkCUhpRSlGgVTSsDaBZHQIyxkhib2Dh1fZQoaAZoCWgPQwiOWfYkMEdgQJSGlFKUaBVN6ANoFkdAjLJbS7Xg+HV9lChoBmgJaA9DCCjXFMhsrWVAlIaUUpRoFU3oA2gWR0CMtTms/6frdX2UKGgGaAloD0MIAKyOHOkKYUCUhpRSlGgVTegDaBZHQIy5Cgbp/w11fZQoaAZoCWgPQwhqaAOwgd1vQJSGlFKUaBVNqgNoFkdAjLs/EfkmyHV9lChoBmgJaA9DCL6/QXv1BXBAlIaUUpRoFU1KA2gWR0CMv1f1HvtudX2UKGgGaAloD0MI4xk09M9+YUCUhpRSlGgVTegDaBZHQIzBO6y0KJF1fZQoaAZoCWgPQwg2ct2U8npDQJSGlFKUaBVNNAFoFkdAjMwFR51Ng3V9lChoBmgJaA9DCC/84HzqikNAlIaUUpRoFUvTaBZHQIzXirDIikh1fZQoaAZoCWgPQwhCJ4QOOhdiQJSGlFKUaBVN6ANoFkdAjN90T101ZXV9lChoBmgJaA9DCK33G+24aGZAlIaUUpRoFU3oA2gWR0CM6GnBLwnZdX2UKGgGaAloD0MIAU9auCyPZkCUhpRSlGgVTegDaBZHQIz1BcZ9/jN1fZQoaAZoCWgPQwitpBXf0J5vQJSGlFKUaBVNZgNoFkdAjPj9CmdiD3V9lChoBmgJaA9DCHIZNzVQFG1AlIaUUpRoFU2LAmgWR0CNJp3C9AX3dX2UKGgGaAloD0MId4L91zmJY0CUhpRSlGgVTegDaBZHQI0r3RPXTVl1fZQoaAZoCWgPQwjMmljgK89uQJSGlFKUaBVNSANoFkdAjS4hd2PkrHV9lChoBmgJaA9DCHsRbccUWXFAlIaUUpRoFU3tAWgWR0CNMDshxHXmdX2UKGgGaAloD0MIwjI2dDOBcUCUhpRSlGgVTXcCaBZHQI0wxxgiNbV1fZQoaAZoCWgPQwhHyhZJOzNwQJSGlFKUaBVNtAJoFkdAjTIocaOxS3V9lChoBmgJaA9DCMlzfR9OunBAlIaUUpRoFU2uAWgWR0CNM4GZ/kNndX2UKGgGaAloD0MICvZf56a6ZECUhpRSlGgVTegDaBZHQI0zveWOZLJ1fZQoaAZoCWgPQwh+5UF6it9gQJSGlFKUaBVN6ANoFkdAjTpIv8IiT3V9lChoBmgJaA9DCILix5g7p2RAlIaUUpRoFU3oA2gWR0CNRHrM1TBJdX2UKGgGaAloD0MIbSBdbNrOZ0CUhpRSlGgVTegDaBZHQI1FOgte2NN1fZQoaAZoCWgPQwjidmhYjKogwJSGlFKUaBVL3WgWR0CNRvedkJ8fdX2UKGgGaAloD0MIWRmNfF7VR0CUhpRSlGgVTQcBaBZHQI1ICbF0gbJ1fZQoaAZoCWgPQwgewvhpXPxsQJSGlFKUaBVNbAJoFkdAjUohmwqy4XV9lChoBmgJaA9DCMWtghhoLWFAlIaUUpRoFU3oA2gWR0CNS677Kq4pdX2UKGgGaAloD0MIHXdKB+u+bUCUhpRSlGgVTfUBaBZHQI1SrfJmukl1fZQoaAZoCWgPQwh5dY4B2bMwQJSGlFKUaBVL9mgWR0CNZH5uZThpdX2UKGgGaAloD0MIrfpcbcX+0T+UhpRSlGgVS9ZoFkdAjWrmfGuLaXV9lChoBmgJaA9DCA1slWDxhHBAlIaUUpRoFU2zAWgWR0CNdTx1gYxddX2UKGgGaAloD0MIXOZ0WczcYECUhpRSlGgVTegDaBZHQI19OgrYoRZ1fZQoaAZoCWgPQwihEtcxrkpfQJSGlFKUaBVN6ANoFkdAjYjnymQ8wHV9lChoBmgJaA9DCAA7N23GbWJAlIaUUpRoFU3oA2gWR0CNuUPxx1gZdX2UKGgGaAloD0MInKbPDjj0a0CUhpRSlGgVTZYDaBZHQI271YEGJN11fZQoaAZoCWgPQwhYN94dGSRhQJSGlFKUaBVN6ANoFkdAjb5vgeii7HV9lChoBmgJaA9DCPzG157ZdGBAlIaUUpRoFU3oA2gWR0CNwHgdfb9IdX2UKGgGaAloD0MI4pNOJJifakCUhpRSlGgVTcIBaBZHQI3A7+WGATZ1fZQoaAZoCWgPQwg/O+C6YrRfQJSGlFKUaBVN6ANoFkdAjcJmZmZmZnV9lChoBmgJaA9DCLwjY7V5+2dAlIaUUpRoFU3oA2gWR0CNxegDifg8dX2UKGgGaAloD0MIY9LfS2GecECUhpRSlGgVTaoBaBZHQI3LVJ+UhV51fZQoaAZoCWgPQwh1sWmlkPZvQJSGlFKUaBVNUANoFkdAjcuzPBzmwXV9lChoBmgJaA9DCCjv42iOb2dAlIaUUpRoFU3oA2gWR0CNzQB91EE1dX2UKGgGaAloD0MIfH2tS42gM0CUhpRSlGgVS9loFkdAjdN6Qmu1W3V9lChoBmgJaA9DCPN2hNOCF2NAlIaUUpRoFU3oA2gWR0CN1jHp8neBdX2UKGgGaAloD0MIZOWXwRgDUUCUhpRSlGgVTegDaBZHQI3ZZ5kbxVh1fZQoaAZoCWgPQwgKgse3d7VuQJSGlFKUaBVNYQFoFkdAjdt0puuRtHV9lChoBmgJaA9DCAr3yrxVJGVAlIaUUpRoFU3oA2gWR0CN3MFvAGjcdX2UKGgGaAloD0MIZw3eV+W2cUCUhpRSlGgVTbYBaBZHQI3hXuNPxhF1fZQoaAZoCWgPQwhGzy10JRJJQJSGlFKUaBVNDQFoFkdAjeMENWluWXV9lChoBmgJaA9DCNVeRNsxwTbAlIaUUpRoFUveaBZHQI3nreuV5bB1fZQoaAZoCWgPQwhn8zgM5nhsQJSGlFKUaBVNiQFoFkdAjeh9QwblzXV9lChoBmgJaA9DCDVj0XS2anBAlIaUUpRoFU19AWgWR0CN7SYwZflZdX2UKGgGaAloD0MIYW73cl9AcECUhpRSlGgVTf4BaBZHQI3uBowmE5B1fZQoaAZoCWgPQwh3nQ35Z8NwQJSGlFKUaBVNoAFoFkdAjfJjKgZjx3V9lChoBmgJaA9DCAUYlj/fpjxAlIaUUpRoFUvVaBZHQI31PpQk5ZN1fZQoaAZoCWgPQwhAEvbtpA9nQJSGlFKUaBVN6ANoFkdAjfbfbCaZyHV9lChoBmgJaA9DCKGA7WDEFjtAlIaUUpRoFUvcaBZHQI37w5q/M4d1fZQoaAZoCWgPQwhoW80648tvQJSGlFKUaBVNfgFoFkdAjf5mMwUQCnV9lChoBmgJaA9DCFlrKLUXqTLAlIaUUpRoFUuzaBZHQI4CLrqt5lh1fZQoaAZoCWgPQwjAJJUp5mhkQJSGlFKUaBVN6ANoFkdAjgR8inpB5XV9lChoBmgJaA9DCFoO9FDbphXAlIaUUpRoFUveaBZHQI4KZmCiAUd1fZQoaAZoCWgPQwgcCTTYVAByQJSGlFKUaBVNXgJoFkdAjgz02cawU3V9lChoBmgJaA9DCEZ55uWwd2ZAlIaUUpRoFU3oA2gWR0CODUKIBRyfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 220, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a24157c3ea8d5a31866689cb6a469d2a7043713cba1e650734fa5806e0dafb44
3
+ size 147407
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77e67c6af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77e67c6b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77e67c6c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77e67c6ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f77e67c6d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f77e67c6dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f77e67c6e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77e67c6ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f77e67c6f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77e67ca040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77e67ca0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77e67ca160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f77e67c4360>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 901120,
47
+ "_total_timesteps": 900000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673740007454116479,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ9N73vOFU98oNjPYORRb6kw3s7c/H/PQAAAAAAAAAAzUKTvD2KVLmz7sY3T+PJMnhSGDsG+fK2AACAPwAAgD8zW8y8ey6Zuv3lzDtl8s83QRa2OtU6MDYAAIA/AACAP6bm9T17Epq6gSkmt04rEDNTxY+74to+NgAAgD8AAIA/jS4oPj1jDjye2xE7cVLtOAzrnz3E7zu6AACAPwAAgD8tQW8+Cj53PJacPDs0I4Y5McsHPi0paLoAAIA/AACAP3PqOj4FcNQ8Y3zZOQBqlzivh2o+6qovuQAAgD8AAIA/UD2IPq5s17yOwRW7qwKKOV6TOr7izTs6AACAPwAAgD/aPqe99lRIumihT7oLHmg2d/o9u7uJcjkAAIA/AACAP0o2qz4IwV4/q4bUPdYDqb6XgxE+3jRIvAAAAAAAAAAA7d9qPmc0LT8VYOU8f7qzvto78jznwZG9AAAAAAAAAAAmWJi9j3opuvjcBTzTFpE29koEO3uiiDUAAIA/AACAPwD1Bj3s4e+5gmnIuv8NQrZK3IU7rh3tOQAAgD8AAIA/Y++zPmRAKD7L0Hm+nSaRviDjcrxQiOy8AAAAAAAAAABaNuU9w5Efug46oDgzEzkzMlm5OYjMuLcAAIA/AACAPwNiwz4aHxc/ht7CO/Njj77V+N89xNQUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0012444444444443814,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvASnPpC/YUCUhpRSlIwBbJRN6AOMAXSUR0CLfF/x2B8QdX2UKGgGaAloD0MI8RKc+sCCYUCUhpRSlGgVTegDaBZHQIt/Ec+7lJZ1fZQoaAZoCWgPQwivJHmu75llQJSGlFKUaBVN6ANoFkdAi4gxBNVR13V9lChoBmgJaA9DCEUOETen3WZAlIaUUpRoFU3oA2gWR0CLjzhuwX67dX2UKGgGaAloD0MIUmNCzCVmYkCUhpRSlGgVTegDaBZHQIuqIVsUIs11fZQoaAZoCWgPQwjhlo+kpJVWQJSGlFKUaBVN6ANoFkdAi7iys0YTCnV9lChoBmgJaA9DCD8buW7KkGRAlIaUUpRoFU3oA2gWR0CLvFGDL8rJdX2UKGgGaAloD0MIChNGs7KtY0CUhpRSlGgVTegDaBZHQIvFoprk8zR1fZQoaAZoCWgPQwizCTAsf4deQJSGlFKUaBVN6ANoFkdAi+7+2mYShHV9lChoBmgJaA9DCCi2gqYlcF9AlIaUUpRoFU3oA2gWR0CL+scLBsQ/dX2UKGgGaAloD0MIjUXT2UnkZUCUhpRSlGgVTegDaBZHQIv/ufChvit1fZQoaAZoCWgPQwii68IPTp1vQJSGlFKUaBVNqgJoFkdAjAPnq/ub7XV9lChoBmgJaA9DCBrdQexMQXFAlIaUUpRoFU0eAWgWR0CMBd7MxGlRdX2UKGgGaAloD0MI6SgHswmIcECUhpRSlGgVTcoBaBZHQIwJ3Qrtmcx1fZQoaAZoCWgPQwhLHk/LD1dmQJSGlFKUaBVN6ANoFkdAjAzdpRGc4HV9lChoBmgJaA9DCPRvl/26e19AlIaUUpRoFU3oA2gWR0CMDtXZoPCmdX2UKGgGaAloD0MIVaLsLWVzZ0CUhpRSlGgVTegDaBZHQIwPO8Gs3hp1fZQoaAZoCWgPQwiGcMyyp0lnQJSGlFKUaBVN6ANoFkdAjBOp5eJHiHV9lChoBmgJaA9DCLDo1mt6WGdAlIaUUpRoFU3oA2gWR0CMFK6JZW7wdX2UKGgGaAloD0MIN3AH6hQAYUCUhpRSlGgVTegDaBZHQIwWueFtbcJ1fZQoaAZoCWgPQwjDRe7patFiQJSGlFKUaBVN6ANoFkdAjBjCDM/yG3V9lChoBmgJaA9DCE+w/zo3lUFAlIaUUpRoFUv5aBZHQIwbrASFoL51fZQoaAZoCWgPQwjXUdUEUedIQJSGlFKUaBVL9WgWR0CMIy371qWUdX2UKGgGaAloD0MIEjElkmjgbkCUhpRSlGgVTS8BaBZHQIwjrv5P/Jh1fZQoaAZoCWgPQwj430p2bGthQJSGlFKUaBVN6ANoFkdAjCYw+t8uz3V9lChoBmgJaA9DCD6zJEBNq29AlIaUUpRoFU1AAWgWR0CMMY6zVtoBdX2UKGgGaAloD0MIx4FXyx3Na0CUhpRSlGgVTSYDaBZHQIxCQKMNtqJ1fZQoaAZoCWgPQwgsRfKVQPViQJSGlFKUaBVN6ANoFkdAjEuaSs8xK3V9lChoBmgJaA9DCPIHA8+982BAlIaUUpRoFU3oA2gWR0CMWLVoYekpdX2UKGgGaAloD0MIaHizBm8WZkCUhpRSlGgVTegDaBZHQIyQmHHmzSl1fZQoaAZoCWgPQwjH1F3ZBa1jQJSGlFKUaBVN6ANoFkdAjJYIRywOfHV9lChoBmgJaA9DCM8Qjln2cGVAlIaUUpRoFU3oA2gWR0CMmn6yB06pdX2UKGgGaAloD0MIs3qH26FAX0CUhpRSlGgVTegDaBZHQIykxVsDW9V1fZQoaAZoCWgPQwgL1c3F31haQJSGlFKUaBVN6ANoFkdAjKc0pEx7A3V9lChoBmgJaA9DCBgip69nAmBAlIaUUpRoFU3oA2gWR0CMrb6KLsKLdX2UKGgGaAloD0MI9Q63Q8PRbkCUhpRSlGgVTSsDaBZHQIyxkhib2Dh1fZQoaAZoCWgPQwiOWfYkMEdgQJSGlFKUaBVN6ANoFkdAjLJbS7Xg+HV9lChoBmgJaA9DCCjXFMhsrWVAlIaUUpRoFU3oA2gWR0CMtTms/6frdX2UKGgGaAloD0MIAKyOHOkKYUCUhpRSlGgVTegDaBZHQIy5Cgbp/w11fZQoaAZoCWgPQwhqaAOwgd1vQJSGlFKUaBVNqgNoFkdAjLs/EfkmyHV9lChoBmgJaA9DCL6/QXv1BXBAlIaUUpRoFU1KA2gWR0CMv1f1HvtudX2UKGgGaAloD0MI4xk09M9+YUCUhpRSlGgVTegDaBZHQIzBO6y0KJF1fZQoaAZoCWgPQwg2ct2U8npDQJSGlFKUaBVNNAFoFkdAjMwFR51Ng3V9lChoBmgJaA9DCC/84HzqikNAlIaUUpRoFUvTaBZHQIzXirDIikh1fZQoaAZoCWgPQwhCJ4QOOhdiQJSGlFKUaBVN6ANoFkdAjN90T101ZXV9lChoBmgJaA9DCK33G+24aGZAlIaUUpRoFU3oA2gWR0CM6GnBLwnZdX2UKGgGaAloD0MIAU9auCyPZkCUhpRSlGgVTegDaBZHQIz1BcZ9/jN1fZQoaAZoCWgPQwitpBXf0J5vQJSGlFKUaBVNZgNoFkdAjPj9CmdiD3V9lChoBmgJaA9DCHIZNzVQFG1AlIaUUpRoFU2LAmgWR0CNJp3C9AX3dX2UKGgGaAloD0MId4L91zmJY0CUhpRSlGgVTegDaBZHQI0r3RPXTVl1fZQoaAZoCWgPQwjMmljgK89uQJSGlFKUaBVNSANoFkdAjS4hd2PkrHV9lChoBmgJaA9DCHsRbccUWXFAlIaUUpRoFU3tAWgWR0CNMDshxHXmdX2UKGgGaAloD0MIwjI2dDOBcUCUhpRSlGgVTXcCaBZHQI0wxxgiNbV1fZQoaAZoCWgPQwhHyhZJOzNwQJSGlFKUaBVNtAJoFkdAjTIocaOxS3V9lChoBmgJaA9DCMlzfR9OunBAlIaUUpRoFU2uAWgWR0CNM4GZ/kNndX2UKGgGaAloD0MICvZf56a6ZECUhpRSlGgVTegDaBZHQI0zveWOZLJ1fZQoaAZoCWgPQwh+5UF6it9gQJSGlFKUaBVN6ANoFkdAjTpIv8IiT3V9lChoBmgJaA9DCILix5g7p2RAlIaUUpRoFU3oA2gWR0CNRHrM1TBJdX2UKGgGaAloD0MIbSBdbNrOZ0CUhpRSlGgVTegDaBZHQI1FOgte2NN1fZQoaAZoCWgPQwjidmhYjKogwJSGlFKUaBVL3WgWR0CNRvedkJ8fdX2UKGgGaAloD0MIWRmNfF7VR0CUhpRSlGgVTQcBaBZHQI1ICbF0gbJ1fZQoaAZoCWgPQwgewvhpXPxsQJSGlFKUaBVNbAJoFkdAjUohmwqy4XV9lChoBmgJaA9DCMWtghhoLWFAlIaUUpRoFU3oA2gWR0CNS677Kq4pdX2UKGgGaAloD0MIHXdKB+u+bUCUhpRSlGgVTfUBaBZHQI1SrfJmukl1fZQoaAZoCWgPQwh5dY4B2bMwQJSGlFKUaBVL9mgWR0CNZH5uZThpdX2UKGgGaAloD0MIrfpcbcX+0T+UhpRSlGgVS9ZoFkdAjWrmfGuLaXV9lChoBmgJaA9DCA1slWDxhHBAlIaUUpRoFU2zAWgWR0CNdTx1gYxddX2UKGgGaAloD0MIXOZ0WczcYECUhpRSlGgVTegDaBZHQI19OgrYoRZ1fZQoaAZoCWgPQwihEtcxrkpfQJSGlFKUaBVN6ANoFkdAjYjnymQ8wHV9lChoBmgJaA9DCAA7N23GbWJAlIaUUpRoFU3oA2gWR0CNuUPxx1gZdX2UKGgGaAloD0MInKbPDjj0a0CUhpRSlGgVTZYDaBZHQI271YEGJN11fZQoaAZoCWgPQwhYN94dGSRhQJSGlFKUaBVN6ANoFkdAjb5vgeii7HV9lChoBmgJaA9DCPzG157ZdGBAlIaUUpRoFU3oA2gWR0CNwHgdfb9IdX2UKGgGaAloD0MI4pNOJJifakCUhpRSlGgVTcIBaBZHQI3A7+WGATZ1fZQoaAZoCWgPQwg/O+C6YrRfQJSGlFKUaBVN6ANoFkdAjcJmZmZmZnV9lChoBmgJaA9DCLwjY7V5+2dAlIaUUpRoFU3oA2gWR0CNxegDifg8dX2UKGgGaAloD0MIY9LfS2GecECUhpRSlGgVTaoBaBZHQI3LVJ+UhV51fZQoaAZoCWgPQwh1sWmlkPZvQJSGlFKUaBVNUANoFkdAjcuzPBzmwXV9lChoBmgJaA9DCCjv42iOb2dAlIaUUpRoFU3oA2gWR0CNzQB91EE1dX2UKGgGaAloD0MIfH2tS42gM0CUhpRSlGgVS9loFkdAjdN6Qmu1W3V9lChoBmgJaA9DCPN2hNOCF2NAlIaUUpRoFU3oA2gWR0CN1jHp8neBdX2UKGgGaAloD0MIZOWXwRgDUUCUhpRSlGgVTegDaBZHQI3ZZ5kbxVh1fZQoaAZoCWgPQwgKgse3d7VuQJSGlFKUaBVNYQFoFkdAjdt0puuRtHV9lChoBmgJaA9DCAr3yrxVJGVAlIaUUpRoFU3oA2gWR0CN3MFvAGjcdX2UKGgGaAloD0MIZw3eV+W2cUCUhpRSlGgVTbYBaBZHQI3hXuNPxhF1fZQoaAZoCWgPQwhGzy10JRJJQJSGlFKUaBVNDQFoFkdAjeMENWluWXV9lChoBmgJaA9DCNVeRNsxwTbAlIaUUpRoFUveaBZHQI3nreuV5bB1fZQoaAZoCWgPQwhn8zgM5nhsQJSGlFKUaBVNiQFoFkdAjeh9QwblzXV9lChoBmgJaA9DCDVj0XS2anBAlIaUUpRoFU19AWgWR0CN7SYwZflZdX2UKGgGaAloD0MIYW73cl9AcECUhpRSlGgVTf4BaBZHQI3uBowmE5B1fZQoaAZoCWgPQwh3nQ35Z8NwQJSGlFKUaBVNoAFoFkdAjfJjKgZjx3V9lChoBmgJaA9DCAUYlj/fpjxAlIaUUpRoFUvVaBZHQI31PpQk5ZN1fZQoaAZoCWgPQwhAEvbtpA9nQJSGlFKUaBVN6ANoFkdAjfbfbCaZyHV9lChoBmgJaA9DCKGA7WDEFjtAlIaUUpRoFUvcaBZHQI37w5q/M4d1fZQoaAZoCWgPQwhoW80648tvQJSGlFKUaBVNfgFoFkdAjf5mMwUQCnV9lChoBmgJaA9DCFlrKLUXqTLAlIaUUpRoFUuzaBZHQI4CLrqt5lh1fZQoaAZoCWgPQwjAJJUp5mhkQJSGlFKUaBVN6ANoFkdAjgR8inpB5XV9lChoBmgJaA9DCFoO9FDbphXAlIaUUpRoFUveaBZHQI4KZmCiAUd1fZQoaAZoCWgPQwgcCTTYVAByQJSGlFKUaBVNXgJoFkdAjgz02cawU3V9lChoBmgJaA9DCEZ55uWwd2ZAlIaUUpRoFU3oA2gWR0CODUKIBRyfdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 220,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaff4ef7a27554dda91572da9ea0758fb7e5f6345c0d20654be2edea9b5ccb8b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:839d30b6932fc950b161841573232627737dc2728d9b0acd5a7c0165165600a7
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (254 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.7703059375894, "std_reward": 37.358892834013986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T00:14:28.798514"}