Dpngtm commited on
Commit
cfa0be1
1 Parent(s): 5bf75fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -170
README.md CHANGED
@@ -1,199 +1,120 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
 
 
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - audio
5
+ - speech
6
+ - emotion-recognition
7
+ - wav2vec2
8
+ datasets:
9
+ - TESS
10
+ - CREMA-D
11
+ - SAVEE
12
+ - RAVDESS
13
+ license: mit
14
+ metrics:
15
+ - accuracy
16
+ - f1
17
  ---
18
 
19
+ # wav2vec2-emotion-recognition
20
 
21
+ This model is fine-tuned on the Wav2Vec2 architecture for speech emotion recognition. It can classify speech into 8 different emotions with corresponding confidence scores.
22
 
23
+ ## Model Description
24
 
25
+ - **Model Architecture:** Wav2Vec2 with sequence classification head
26
+ - **Language:** English
27
+ - **Task:** Speech Emotion Recognition
28
+ - **Fine-tuned from:** facebook/wav2vec2-base
29
+ - **Datasets:** Combined emotion datasets
30
+ - [TESS](https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess)
31
+ - [CREMA-D](https://www.kaggle.com/datasets/ejlok1/cremad)
32
+ - [SAVEE](https://www.kaggle.com/datasets/barelydedicated/savee-database)
33
+ - [RAVDESS](https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio)
34
 
35
+ ## Performance Metrics
36
+ - **Accuracy:** 79.57%
37
+ - **F1 Score:** 79.43%
38
 
39
+ ## Supported Emotions
40
+ - 😠 Angry
41
+ - 😌 Calm
42
+ - 🤢 Disgust
43
+ - 😨 Fearful
44
+ - 😊 Happy
45
+ - 😐 Neutral
46
+ - 😢 Sad
47
+ - 😲 Surprised
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ## Training Details
50
 
51
+ The model was trained with the following configuration:
52
+ - **Epochs:** 15
53
+ - **Batch Size:** 16
54
+ - **Learning Rate:** 5e-5
55
+ - **Optimizer:** AdamW
56
+ - **Weight Decay:** 0.03
57
+ - **Gradient Accumulation Steps:** 2
58
+ - **Mixed Precision:** fp16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ For detailed training process, check out the [Fine-tuning Notebook](https://colab.research.google.com/drive/1VNhIjY7gW29d0uKGNDGN0eOp-pxr_pFL?usp=drive_link)
61
 
62
+ ## Limitations
63
 
64
+ ### Audio Requirements:
65
 
66
+ - Sampling rate: 16kHz (will be automatically resampled)
67
+ - Maximum duration: 1 minute
68
+ - Clear speech with minimal background noise recommended
69
 
70
+ ### Performance Considerations:
71
 
72
+ - Best results with clear speech audio
73
+ - Performance may vary with different accents
74
+ - Background noise can affect accuracy
75
 
 
76
 
77
+ ## Demo
78
+ https://huggingface.co/spaces/Dpngtm/Audio-Emotion-Recognition
79
 
80
+ ## Contact
81
+ * **GitHub**: [DGautam11](https://github.com/DGautam11)
82
+ * **LinkedIn**: [Deepan Gautam](https://www.linkedin.com/in/deepan-gautam)
83
+ * **Hugging Face**: [@Dpngtm](https://huggingface.co/Dpngtm)
84
 
85
+ For issues and questions, feel free to:
86
+ 1. Open an issue on the [Model Repository](https://huggingface.co/Dpngtm/wav2vec2-emotion-recognition)
87
+ 2. Comment on the [Demo Space](https://huggingface.co/spaces/Dpngtm/Audio-Emotion-Recognition)
88
 
89
+ ## Usage
90
 
91
+ ```python
92
+ from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
93
+ import torch
94
+ import torchaudio
95
 
96
+ # Load model and processor
97
+ model = Wav2Vec2ForSequenceClassification.from_pretrained("Dpngtm/wav2vec2-emotion-recognition")
98
+ processor = Wav2Vec2Processor.from_pretrained("Dpngtm/wav2vec2-emotion-recognition")
99
 
100
+ # Load and preprocess audio
101
+ speech_array, sampling_rate = torchaudio.load("path_to_audio.wav")
102
+ if sampling_rate != 16000:
103
+ resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
104
+ speech_array = resampler(speech_array)
105
 
106
+ # Convert to mono if stereo
107
+ if speech_array.shape[0] > 1:
108
+ speech_array = torch.mean(speech_array, dim=0, keepdim=True)
109
 
110
+ speech_array = speech_array.squeeze().numpy()
111
 
112
+ # Process through model
113
+ inputs = processor(speech_array, sampling_rate=16000, return_tensors="pt", padding=True)
114
+ with torch.no_grad():
115
+ outputs = model(**inputs)
116
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
117
 
118
+ # Get predicted emotion
119
+ emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
120
+ predicted_emotion = emotion_labels[predictions.argmax().item()]