--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - DrAliGomaa/ar-eg-dataset model-index: - name: whisper-small-ar-draligomaa-dataset results: [] --- # whisper-small-ar-draligomaa-dataset This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the draligomaa-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2685 - Wer Ortho: 18.4164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | |:-------------:|:------:|:----:|:---------------:|:---------:| | 0.4073 | 0.3195 | 100 | 0.3614 | 25.9486 | | 0.3108 | 0.6390 | 200 | 0.3088 | 23.1579 | | 0.2658 | 0.9585 | 300 | 0.2840 | 19.9915 | | 0.1807 | 1.2780 | 400 | 0.2759 | 19.6826 | | 0.1591 | 1.5974 | 500 | 0.2685 | 18.4164 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0