|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Sample new images from a pre-trained DiT. |
|
""" |
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
from torchvision.utils import save_image |
|
from diffusion import create_diffusion |
|
from diffusers.models import AutoencoderKL |
|
from download import find_model |
|
from models import DiT_models |
|
import argparse |
|
|
|
|
|
def main(args): |
|
|
|
torch.manual_seed(args.seed) |
|
torch.set_grad_enabled(False) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if args.ckpt is None: |
|
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download." |
|
assert args.image_size in [256, 512] |
|
assert args.num_classes == 1000 |
|
|
|
|
|
latent_size = args.image_size // 8 |
|
model = DiT_models[args.model]( |
|
input_size=latent_size, |
|
num_classes=args.num_classes |
|
).to(device) |
|
|
|
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt" |
|
state_dict = find_model(ckpt_path) |
|
model.load_state_dict(state_dict) |
|
model.eval() |
|
diffusion = create_diffusion(str(args.num_sampling_steps)) |
|
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) |
|
|
|
|
|
class_labels = [207, 360, 387, 974, 88, 979, 417, 279] |
|
|
|
|
|
n = len(class_labels) |
|
z = torch.randn(n, 4, latent_size, latent_size, device=device) |
|
y = torch.tensor(class_labels, device=device) |
|
|
|
|
|
z = torch.cat([z, z], 0) |
|
y_null = torch.tensor([1000] * n, device=device) |
|
y = torch.cat([y, y_null], 0) |
|
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale) |
|
|
|
|
|
samples = diffusion.p_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device |
|
) |
|
samples, _ = samples.chunk(2, dim=0) |
|
samples = vae.decode(samples / 0.18215).sample |
|
|
|
|
|
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1)) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2") |
|
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="mse") |
|
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256) |
|
parser.add_argument("--num-classes", type=int, default=1000) |
|
parser.add_argument("--cfg-scale", type=float, default=4.0) |
|
parser.add_argument("--num-sampling-steps", type=int, default=250) |
|
parser.add_argument("--seed", type=int, default=0) |
|
parser.add_argument("--ckpt", type=str, default=None, |
|
help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).") |
|
args = parser.parse_args() |
|
main(args) |
|
|