# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ A minimal training script for DiT using PyTorch DDP. """ import torch # the first flag below was False when we tested this script but True makes A100 training a lot faster: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from torchvision.datasets import ImageFolder from torchvision import transforms import numpy as np from collections import OrderedDict from PIL import Image from copy import deepcopy from glob import glob from time import time import argparse import logging import os from models import DiT_models from diffusion import create_diffusion from diffusers.models import AutoencoderKL ################################################################################# # Training Helper Functions # ################################################################################# @torch.no_grad() def update_ema(ema_model, model, decay=0.9999): """ Step the EMA model towards the current model. """ ema_params = OrderedDict(ema_model.named_parameters()) model_params = OrderedDict(model.named_parameters()) for name, param in model_params.items(): # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay) def requires_grad(model, flag=True): """ Set requires_grad flag for all parameters in a model. """ for p in model.parameters(): p.requires_grad = flag def cleanup(): """ End DDP training. """ dist.destroy_process_group() def create_logger(logging_dir): """ Create a logger that writes to a log file and stdout. """ if dist.get_rank() == 0: # real logger logging.basicConfig( level=logging.INFO, format='[\033[34m%(asctime)s\033[0m] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")] ) logger = logging.getLogger(__name__) else: # dummy logger (does nothing) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) return logger def center_crop_arr(pil_image, image_size): """ Center cropping implementation from ADM. https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 """ while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize( tuple(x // 2 for x in pil_image.size), resample=Image.BOX ) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize( tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC ) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size]) ################################################################################# # Training Loop # ################################################################################# def main(args): """ Trains a new DiT model. """ assert torch.cuda.is_available(), "Training currently requires at least one GPU." # Setup DDP: dist.init_process_group("nccl") assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size." rank = dist.get_rank() device = rank % torch.cuda.device_count() seed = args.global_seed * dist.get_world_size() + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") # Setup an experiment folder: if rank == 0: os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders) experiment_index = len(glob(f"{args.results_dir}/*")) model_string_name = args.model.replace("/", "-") # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders) experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}" # Create an experiment folder checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints os.makedirs(checkpoint_dir, exist_ok=True) logger = create_logger(experiment_dir) logger.info(f"Experiment directory created at {experiment_dir}") else: logger = create_logger(None) # Create model: assert args.image_size % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)." latent_size = args.image_size // 8 model = DiT_models[args.model]( input_size=latent_size, num_classes=args.num_classes ) # Note that parameter initialization is done within the DiT constructor ema = deepcopy(model).to(device) # Create an EMA of the model for use after training requires_grad(ema, False) model = DDP(model.to(device), device_ids=[rank]) diffusion = create_diffusion(timestep_respacing="") # default: 1000 steps, linear noise schedule vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) logger.info(f"DiT Parameters: {sum(p.numel() for p in model.parameters()):,}") # Setup optimizer (we used default Adam betas=(0.9, 0.999) and a constant learning rate of 1e-4 in our paper): opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0) # Setup data: transform = transforms.Compose([ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) ]) dataset = ImageFolder(args.data_path, transform=transform) sampler = DistributedSampler( dataset, num_replicas=dist.get_world_size(), rank=rank, shuffle=True, seed=args.global_seed ) loader = DataLoader( dataset, batch_size=int(args.global_batch_size // dist.get_world_size()), shuffle=False, sampler=sampler, num_workers=args.num_workers, pin_memory=True, drop_last=True ) logger.info(f"Dataset contains {len(dataset):,} images ({args.data_path})") # Prepare models for training: update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights model.train() # important! This enables embedding dropout for classifier-free guidance ema.eval() # EMA model should always be in eval mode # Variables for monitoring/logging purposes: train_steps = 0 log_steps = 0 running_loss = 0 start_time = time() logger.info(f"Training for {args.epochs} epochs...") for epoch in range(args.epochs): sampler.set_epoch(epoch) logger.info(f"Beginning epoch {epoch}...") for x, y in loader: x = x.to(device) y = y.to(device) with torch.no_grad(): # Map input images to latent space + normalize latents: x = vae.encode(x).latent_dist.sample().mul_(0.18215) t = torch.randint(0, diffusion.num_timesteps, (x.shape[0],), device=device) model_kwargs = dict(y=y) loss_dict = diffusion.training_losses(model, x, t, model_kwargs) loss = loss_dict["loss"].mean() opt.zero_grad() loss.backward() opt.step() update_ema(ema, model.module) # Log loss values: running_loss += loss.item() log_steps += 1 train_steps += 1 if train_steps % args.log_every == 0: # Measure training speed: torch.cuda.synchronize() end_time = time() steps_per_sec = log_steps / (end_time - start_time) # Reduce loss history over all processes: avg_loss = torch.tensor(running_loss / log_steps, device=device) dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM) avg_loss = avg_loss.item() / dist.get_world_size() logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") # Reset monitoring variables: running_loss = 0 log_steps = 0 start_time = time() # Save DiT checkpoint: if train_steps % args.ckpt_every == 0 and train_steps > 0: if rank == 0: checkpoint = { "model": model.module.state_dict(), "ema": ema.state_dict(), "opt": opt.state_dict(), "args": args } checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt" torch.save(checkpoint, checkpoint_path) logger.info(f"Saved checkpoint to {checkpoint_path}") dist.barrier() model.eval() # important! This disables randomized embedding dropout # do any sampling/FID calculation/etc. with ema (or model) in eval mode ... logger.info("Done!") cleanup() if __name__ == "__main__": # Default args here will train DiT-XL/2 with the hyperparameters we used in our paper (except training iters). parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, required=True) parser.add_argument("--results-dir", type=str, default="results") parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2") parser.add_argument("--image-size", type=int, choices=[256, 512], default=256) parser.add_argument("--num-classes", type=int, default=1000) parser.add_argument("--epochs", type=int, default=1400) parser.add_argument("--global-batch-size", type=int, default=256) parser.add_argument("--global-seed", type=int, default=0) parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema") # Choice doesn't affect training parser.add_argument("--num-workers", type=int, default=4) parser.add_argument("--log-every", type=int, default=100) parser.add_argument("--ckpt-every", type=int, default=50_000) args = parser.parse_args() main(args)