# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Samples a large number of images from a pre-trained DiT model using DDP. Subsequently saves a .npz file that can be used to compute FID and other evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations For a simple single-GPU/CPU sampling script, see sample.py. """ import torch import torch.distributed as dist from models import DiT_models from download import find_model from diffusion import create_diffusion from diffusers.models import AutoencoderKL from tqdm import tqdm import os from PIL import Image import numpy as np import math import argparse def create_npz_from_sample_folder(sample_dir, num=50_000): """ Builds a single .npz file from a folder of .png samples. """ samples = [] for i in tqdm(range(num), desc="Building .npz file from samples"): sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") sample_np = np.asarray(sample_pil).astype(np.uint8) samples.append(sample_np) samples = np.stack(samples) assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) npz_path = f"{sample_dir}.npz" np.savez(npz_path, arr_0=samples) print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") return npz_path def main(args): """ Run sampling. """ torch.backends.cuda.matmul.allow_tf32 = args.tf32 # True: fast but may lead to some small numerical differences assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" torch.set_grad_enabled(False) # Setup DDP: dist.init_process_group("nccl") rank = dist.get_rank() device = rank % torch.cuda.device_count() seed = args.global_seed * dist.get_world_size() + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") if args.ckpt is None: assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download." assert args.image_size in [256, 512] assert args.num_classes == 1000 # Load model: latent_size = args.image_size // 8 model = DiT_models[args.model]( input_size=latent_size, num_classes=args.num_classes ).to(device) # Auto-download a pre-trained model or load a custom DiT checkpoint from train.py: ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt" state_dict = find_model(ckpt_path) model.load_state_dict(state_dict) model.eval() # important! diffusion = create_diffusion(str(args.num_sampling_steps)) vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0" using_cfg = args.cfg_scale > 1.0 # Create folder to save samples: model_string_name = args.model.replace("/", "-") ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained" folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \ f"cfg-{args.cfg_scale}-seed-{args.global_seed}" sample_folder_dir = f"{args.sample_dir}/{folder_name}" if rank == 0: os.makedirs(sample_folder_dir, exist_ok=True) print(f"Saving .png samples at {sample_folder_dir}") dist.barrier() # Figure out how many samples we need to generate on each GPU and how many iterations we need to run: n = args.per_proc_batch_size global_batch_size = n * dist.get_world_size() # To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples: total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size) if rank == 0: print(f"Total number of images that will be sampled: {total_samples}") assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" samples_needed_this_gpu = int(total_samples // dist.get_world_size()) assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" iterations = int(samples_needed_this_gpu // n) pbar = range(iterations) pbar = tqdm(pbar) if rank == 0 else pbar total = 0 for _ in pbar: # Sample inputs: z = torch.randn(n, model.in_channels, latent_size, latent_size, device=device) y = torch.randint(0, args.num_classes, (n,), device=device) # Setup classifier-free guidance: if using_cfg: z = torch.cat([z, z], 0) y_null = torch.tensor([1000] * n, device=device) y = torch.cat([y, y_null], 0) model_kwargs = dict(y=y, cfg_scale=args.cfg_scale) sample_fn = model.forward_with_cfg else: model_kwargs = dict(y=y) sample_fn = model.forward # Sample images: samples = diffusion.p_sample_loop( sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device ) if using_cfg: samples, _ = samples.chunk(2, dim=0) # Remove null class samples samples = vae.decode(samples / 0.18215).sample samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() # Save samples to disk as individual .png files for i, sample in enumerate(samples): index = i * dist.get_world_size() + rank + total Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png") total += global_batch_size # Make sure all processes have finished saving their samples before attempting to convert to .npz dist.barrier() if rank == 0: create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples) print("Done.") dist.barrier() dist.destroy_process_group() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2") parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema") parser.add_argument("--sample-dir", type=str, default="samples") parser.add_argument("--per-proc-batch-size", type=int, default=32) parser.add_argument("--num-fid-samples", type=int, default=50_000) parser.add_argument("--image-size", type=int, choices=[256, 512], default=256) parser.add_argument("--num-classes", type=int, default=1000) parser.add_argument("--cfg-scale", type=float, default=1.5) parser.add_argument("--num-sampling-steps", type=int, default=250) parser.add_argument("--global-seed", type=int, default=0) parser.add_argument("--tf32", action=argparse.BooleanOptionalAction, default=True, help="By default, use TF32 matmuls. This massively accelerates sampling on Ampere GPUs.") parser.add_argument("--ckpt", type=str, default=None, help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).") args = parser.parse_args() main(args)