# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Sample new images from a pre-trained DiT. """ import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True from torchvision.utils import save_image from diffusion import create_diffusion from diffusers.models import AutoencoderKL from download import find_model from models import DiT_models import argparse def main(args): # Setup PyTorch: torch.manual_seed(args.seed) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" if args.ckpt is None: assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download." assert args.image_size in [256, 512] assert args.num_classes == 1000 # Load model: latent_size = args.image_size // 8 model = DiT_models[args.model]( input_size=latent_size, num_classes=args.num_classes ).to(device) # Auto-download a pre-trained model or load a custom DiT checkpoint from train.py: ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt" state_dict = find_model(ckpt_path) model.load_state_dict(state_dict) model.eval() # important! diffusion = create_diffusion(str(args.num_sampling_steps)) vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) # Labels to condition the model with (feel free to change): class_labels = [207, 360, 387, 974, 88, 979, 417, 279] # Create sampling noise: n = len(class_labels) z = torch.randn(n, 4, latent_size, latent_size, device=device) y = torch.tensor(class_labels, device=device) # Setup classifier-free guidance: z = torch.cat([z, z], 0) y_null = torch.tensor([1000] * n, device=device) y = torch.cat([y, y_null], 0) model_kwargs = dict(y=y, cfg_scale=args.cfg_scale) # Sample images: samples = diffusion.p_sample_loop( model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device ) samples, _ = samples.chunk(2, dim=0) # Remove null class samples samples = vae.decode(samples / 0.18215).sample # Save and display images: save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2") parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="mse") parser.add_argument("--image-size", type=int, choices=[256, 512], default=256) parser.add_argument("--num-classes", type=int, default=1000) parser.add_argument("--cfg-scale", type=float, default=4.0) parser.add_argument("--num-sampling-steps", type=int, default=250) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--ckpt", type=str, default=None, help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).") args = parser.parse_args() main(args)