diff --git "a/GEMMA_9B_B10_MMLU_H.ipynb" "b/GEMMA_9B_B10_MMLU_H.ipynb" new file mode 100644--- /dev/null +++ "b/GEMMA_9B_B10_MMLU_H.ipynb" @@ -0,0 +1,8922 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0c24ca36-1782-4ce8-8094-6f6528dada19", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "e45f01941b984da59c8215e5d0fdbc33", + "c1af9f9962f14181b56af5c6340f41ad", + "3381a25afa1a4ac4b65c531feb5f9407", + "ade207c5bb44485dae09a5a3fc414bfb", + "96f8ae744112403aa1c2415772cf5faf", + "1f51d19ea1d84b0aa8d7635e873eb8fb", + "e8026b1bf4f948f7a67ab753bdc16565", + "9a798dd18fca4140ae6d03085ae83629", + "5f2179c1a6314af88adca5856ed397f5", + "907d0f51a73748e9a7cda50e7bb58c35", + "78736d1cec3f4bcc9d2a59672ee4bb40", + "84e2f6d79bb04e388fd6053fc0207efd", + "7fa40ed7a38b4924902dfe6c1ff952f8", + "904403c8a1334588bee0c629a8518a5d", + "da9cc5f3770547759a5366c3410bf23b", + "8bebf7a327364c05b04aae6d5def58ff", + "91105ed7122b4dfd9619f181ba8a838a", + "1511905fb6244d319a5d571c6f0d718d", + "a1d5b347418e473793ef7496bc9a6e21", + "45463d2f2148403c9ce4a8d743ba2925" + ] + }, + "id": "0c24ca36-1782-4ce8-8094-6f6528dada19", + "outputId": "ab783659-69fd-42c5-c28a-bc05875b228d" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='
=2025.1.4 (from unsloth)\n", + " Downloading unsloth_zoo-2025.1.5-py3-none-any.whl.metadata (16 kB)\n", + "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.11/dist-packages (from unsloth) (2.5.1+cu121)\n", + "Collecting xformers>=0.0.27.post2 (from unsloth)\n", + " Downloading xformers-0.0.29.post1-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (1.0 kB)\n", + "Collecting bitsandbytes (from unsloth)\n", + " Downloading bitsandbytes-0.45.1-py3-none-manylinux_2_24_x86_64.whl.metadata (5.8 kB)\n", + "Requirement already satisfied: triton>=3.0.0 in /usr/local/lib/python3.11/dist-packages (from unsloth) (3.1.0)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from unsloth) (24.2)\n", + "Collecting tyro (from unsloth)\n", + " Downloading tyro-0.9.13-py3-none-any.whl.metadata (9.4 kB)\n", + "Requirement already satisfied: transformers!=4.47.0,>=4.46.1 in /usr/local/lib/python3.11/dist-packages (from unsloth) (4.47.1)\n", + "Collecting datasets>=2.16.0 (from unsloth)\n", + " Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n", + "Requirement already satisfied: sentencepiece>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from unsloth) (0.2.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from unsloth) (4.67.1)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from unsloth) (5.9.5)\n", + "Requirement already satisfied: wheel>=0.42.0 in /usr/local/lib/python3.11/dist-packages (from unsloth) (0.45.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from unsloth) (1.26.4)\n", + "Requirement already satisfied: accelerate>=0.34.1 in /usr/local/lib/python3.11/dist-packages (from unsloth) (1.2.1)\n", + "Collecting trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9 (from unsloth)\n", + " Downloading trl-0.13.0-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: peft!=0.11.0,>=0.7.1 in /usr/local/lib/python3.11/dist-packages (from unsloth) (0.14.0)\n", + "Collecting protobuf<4.0.0 (from unsloth)\n", + " Downloading protobuf-3.20.3-py2.py3-none-any.whl.metadata (720 bytes)\n", + "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.11/dist-packages (from unsloth) (0.27.1)\n", + "Collecting hf_transfer (from unsloth)\n", + " Downloading hf_transfer-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages (from accelerate>=0.34.1->unsloth) (6.0.2)\n", + "Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.11/dist-packages (from accelerate>=0.34.1->unsloth) (0.5.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->unsloth) (3.17.0)\n", + "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->unsloth) (17.0.0)\n", + "Collecting dill<0.3.9,>=0.3.0 (from datasets>=2.16.0->unsloth)\n", + " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->unsloth) (2.2.2)\n", + "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->unsloth) (2.32.3)\n", + "Collecting xxhash (from datasets>=2.16.0->unsloth)\n", + " Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", + "Collecting multiprocess<0.70.17 (from datasets>=2.16.0->unsloth)\n", + " Downloading multiprocess-0.70.16-py311-none-any.whl.metadata (7.2 kB)\n", + "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets>=2.16.0->unsloth)\n", + " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->unsloth) (3.11.11)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface_hub->unsloth) (4.12.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (3.1.5)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (9.1.0.70)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (12.1.105)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2.4.0->unsloth) (1.13.1)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.11/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.4.0->unsloth) (12.6.85)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2.4.0->unsloth) (1.3.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers!=4.47.0,>=4.46.1->unsloth) (2024.11.6)\n", + "Requirement already satisfied: tokenizers<0.22,>=0.21 in /usr/local/lib/python3.11/dist-packages (from transformers!=4.47.0,>=4.46.1->unsloth) (0.21.0)\n", + "Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (13.9.4)\n", + "Collecting cut_cross_entropy (from unsloth_zoo>=2025.1.4->unsloth)\n", + " Downloading cut_cross_entropy-25.1.1-py3-none-any.whl.metadata (9.3 kB)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-packages (from unsloth_zoo>=2025.1.4->unsloth) (11.1.0)\n", + "Requirement already satisfied: docstring-parser>=0.15 in /usr/local/lib/python3.11/dist-packages (from tyro->unsloth) (0.16)\n", + "Collecting shtab>=1.5.6 (from tyro->unsloth)\n", + " Downloading shtab-1.7.1-py3-none-any.whl.metadata (7.3 kB)\n", + "Requirement already satisfied: typeguard>=4.0.0 in /usr/local/lib/python3.11/dist-packages (from tyro->unsloth) (4.4.1)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.3.2)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (24.3.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.18.3)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2024.12.14)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (2.18.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2.4.0->unsloth) (3.0.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2025.1)\n", + "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (0.1.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth) (1.17.0)\n", + "Downloading unsloth-2025.1.6-py3-none-any.whl (175 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m175.5/175.5 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading datasets-3.2.0-py3-none-any.whl (480 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading protobuf-3.20.3-py2.py3-none-any.whl (162 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m162.1/162.1 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading trl-0.13.0-py3-none-any.whl (293 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m293.4/293.4 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading unsloth_zoo-2025.1.5-py3-none-any.whl (80 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m80.2/80.2 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading xformers-0.0.29.post1-cp311-cp311-manylinux_2_28_x86_64.whl (15.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.3/15.3 MB\u001b[0m \u001b[31m105.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading bitsandbytes-0.45.1-py3-none-manylinux_2_24_x86_64.whl (69.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.7/69.7 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading hf_transfer-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m80.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tyro-0.9.13-py3-none-any.whl (115 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.7/115.7 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multiprocess-0.70.16-py311-none-any.whl (143 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.5/143.5 kB\u001b[0m \u001b[31m13.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading shtab-1.7.1-py3-none-any.whl (14 kB)\n", + "Downloading cut_cross_entropy-25.1.1-py3-none-any.whl (22 kB)\n", + "Downloading xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.8/194.8 kB\u001b[0m \u001b[31m17.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: xxhash, shtab, protobuf, hf_transfer, fsspec, dill, multiprocess, tyro, xformers, datasets, cut_cross_entropy, bitsandbytes, trl, unsloth_zoo, unsloth\n", + " Attempting uninstall: protobuf\n", + " Found existing installation: protobuf 4.25.5\n", + " Uninstalling protobuf-4.25.5:\n", + " Successfully uninstalled protobuf-4.25.5\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2024.10.0\n", + " Uninstalling fsspec-2024.10.0:\n", + " Successfully uninstalled fsspec-2024.10.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\n", + "tensorflow-metadata 1.16.1 requires protobuf<6.0.0dev,>=4.25.2; python_version >= \"3.11\", but you have protobuf 3.20.3 which is incompatible.\n", + "grpcio-status 1.62.3 requires protobuf>=4.21.6, but you have protobuf 3.20.3 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed bitsandbytes-0.45.1 cut_cross_entropy-25.1.1 datasets-3.2.0 dill-0.3.8 fsspec-2024.9.0 hf_transfer-0.1.9 multiprocess-0.70.16 protobuf-3.20.3 shtab-1.7.1 trl-0.13.0 tyro-0.9.13 unsloth-2025.1.6 unsloth_zoo-2025.1.5 xformers-0.0.29.post1 xxhash-3.5.0\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "google" + ] + }, + "id": "1da8cdc4402448ccbc0a22cab4c6df88" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting git+https://github.com/unslothai/unsloth.git\n", + " Cloning https://github.com/unslothai/unsloth.git to /tmp/pip-req-build-v8x0l7jh\n", + " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-req-build-v8x0l7jh\n", + " Resolved https://github.com/unslothai/unsloth.git to commit bdf0cd6033595be4e7ed23d0d002bb176d343152\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Building wheels for collected packages: unsloth\n", + " Building wheel for unsloth (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for unsloth: filename=unsloth-2025.1.7-py3-none-any.whl size=174896 sha256=c34c896c097ba0b49aab5a8aa2c98ffcaf25f978810edb1fdd89924d20e11950\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-7e7r7xi9/wheels/d1/17/05/850ab10c33284a4763b0595cd8ea9d01fce6e221cac24b3c01\n", + "Successfully built unsloth\n", + "Installing collected packages: unsloth\n", + " Attempting uninstall: unsloth\n", + " Found existing installation: unsloth 2025.1.6\n", + " Uninstalling unsloth-2025.1.6:\n", + " Successfully uninstalled unsloth-2025.1.6\n", + "Successfully installed unsloth-2025.1.7\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "fbc9900d-28d2-4bda-9848-b572fbe778d2", + "metadata": { + "id": "fbc9900d-28d2-4bda-9848-b572fbe778d2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 575, + "referenced_widgets": [ + "174f06d96a414316a2312c09f34f712e", + "c08ac93850bb4e0da4e615d5a2c54ea0", + "64bfcdc6238144659413b70f23ecd225", + "450ee7e1025a4a72b6d0829c3a2b3f63", + "cc936c061dc24a378944f0789480f71e", + "af075b28873e440baeca0d3bd1326568", + "d7e0bbd0c277432d9f401168e157ad8d", + "20577fc6bce047979e0a00436ccbd4b5", + "0d1200471c634cb88c35131fb6bb8138", + "f6710c96595c40d7868f341f2c12fc83", + "bd3c8bd7b391470e8a4f73f9ffa7b3a4", + "524de86a695f480eb439a8fd86b21864", + "6b3f49b308184d2c8ebbf9e147412404", + "53f83486f9d745b0a624b05d07ba3d8d", + "7311811bb4bb46908a296fca1ede115b", + "204838c48ca7472e9ebf7dbf33634eb0", + "4325dadbd09b4dc29da3c0a85bc5fd7f", + "05ca7a0b6350455d89a717ddc2e63a85", + "c090b7a2afac4fcb984b01087222a3f9", + "3833525d061a4a0e9a7a79611122efc0", + "84c0a4007be04b61bafcef174ec69371", + "772ee62e61b74b2d9fcb61c7c2d286f7", + "68c533ea901a4c28920b1112b93de258", + "c188d0af85324681b5064cdac2ba2f31", + "b85ae7b8519640c0a7c9583ed2a8b23f", + "df07a8783e864ffd8b772cff27fb5b28", + "79a1cb526f4f4a11a940d78b6f3097c4", + "a93a629d55334109adaf15782e9065cf", + "06b4cbd683da47c8a50afe0065a51151", + "472bd364bafb4867a8f9e9f899cbc25e", + "e887923a42a942beae899f70429fe491", + "3cc7b6773e0543bc836e4595d2ed7bfe", + "25be37999c2545ed8c96a2ce60742cee", + "a372bd6011b84c45a97e148bdc9695fc", + "7cc3464f772b4dacb91f8ce218d342c3", + "52804bc114fe46a0b40d553d42a38244", + "c76fa847be0746b4b4ee90ab451fc7f6", + "a20ccdaa397c4f348b96777cd7f11960", + "2b3a85edad614340ba341d2c072d649a", + "7f69070804d742cdaae1d2c66563e1ed", + "8bf0d5ca3a2c40b6a6d78f419acf5e5a", + "4403117d959742f6ae9c6efe6f77ed4f", + "6ebd10dc63c34f4ba578409f24149e94", + "6edb9d21018a492ba8fb3ea85372946f", + "bc89f3e60fa84bf691e9730faa488954", + "b4cb31a854374e32bf3f4341c5d3e284", + "b247dbbce0654ae8a58aa392c239c39d", + "9d6f6ae615aa4fa3a5aed82f7fe1cf8d", + "e029ea34ff034b32b76f0a844abb097e", + "e8f6511b33bc4013834552ec36806919", + "ae11e1bb9b54410290b8274857a8348d", + "6ce22946f266497c8a7b96b877a6acfb", + "3719bb61e1a3492eb990401878947bac", + "c43c34123f644b4682a47526d11d88e2", + "68a99f03b6fc4b92971f82d03f7623f0", + "77af006fd0f74080a44923315a08acb2", + "d3607cb4d41345208edc57807b912e09", + "b514a8e63d6d47da8ac3627decef89cc", + "2223c3227ba74fc695a3d32f04b829ec", + "a849ad5387694694b20a2f703a86bf0d", + "f011cc7c7c37423b8e937c6de0481de6", + "2ec8db6289e7471c8a71a0ff87b6f8a2", + "88d34e1c0cb5447e983b11fb085eb97a", + "43c4b99c0d374f13b89e6eee5af8f482", + "81f63c0ad2d64e1c86da9f4e763946dc", + "9f69f8bea863455b997b0685c9028c3f", + "915431f1bd894b86a5a1dea133f7cb3b", + "fe522ed5ca7c45a48e3e1c046db6bdba", + "37702074c4254f6eb6dc9df61cbb858e", + "8b16b87e7c6c4abd82257f56b8972eb3", + "6f819b18d65541cfab2be05a7eb8b274", + "46ab79f0e8d4499792faa9876f9b3ff0", + "0c549289db31454f9671a835cc45f16e", + "18ae43ac56a441b1a98f37569fd6d177", + "97ec184119fd4af194f16b7a8ecfa053", + "14a438bd0f324e4a91866162cc86c85c", + "d01d21b04daa491eb39a81ee26a7fc33", + "c85e7e8de6864d7398797ac306cfef98", + "8aed7f470993413aae78afc0a74b058b", + "b60257c0af80409ba7bc7c550e5caa80", + "5a1cc2a794654af1bce950fcd542fd15", + "3fcf65bf29d1449d88cebbdafea206e9", + "7cc17c2030ec4f41ac9e965ff11b14dd", + "a2f2db68c9194afca304e70b557b0e8e", + "9570c5fefa01420e9bcc38e7385c6649", + "63ad5215157d4a8fb0ada9cb86c94f03", + "2ce0411a86eb46ac974d0da2f7d0c474", + "35cd05d06f4a4bc59437d65b7877a241", + "56026e46c26c44e5804e9ffdec4a9ccb", + "25efb39f5ea142f084a8696b43fa16cd", + "1f6b6f1528534b4e80e5f00ad0c5c0b7", + "a7a08996e9c64811b96c5cba473a614b", + "a363103e45e94eb0bee2046720ba2130", + "2a72200c88c74eb7b1051e2b9e13824d", + "82023240560045c1bf1f7dbe870386cf", + "aaab672ca574454f95d0efbed97074d2", + "6408fe4dd2f24a2ba155aa801ee4d9be", + "8019199ec0ce4d878dd6e577e79813dc", + "113dc77b9b7d459ea9d7541ec2af46fd", + "2c4d26f10efd426f8d023c0560a77841", + "bb85706ab5df455f8e73d5fe7c623ca3", + "d9f5bc779bfd42dfa03c6a32031255c1", + "609d90e62e6743e8b006a975d3383715", + "a598b48e927f464e969ad419e46ca555", + "679eac02c4244ec7810603c70ddda5a4", + "ce458d53331c4a93892cfc23e0fc115a", + "048dfd2a045c49439c79734ac42e298f", + "d7425e149bbb409080cd7affb8f31652", + "ea175e791098454cab0206e0023d9138", + "0f7fbd8af9474cb6a00fee4c34d57f3e", + "9b7e202889914708b64ca8fd7fb447a2", + "0083586e15fa407d822d41a7c11458a4", + "b0f38f8eef314a1ca445ca3615b3fe8b", + "5955f0ecb8824d78ad43a10695be1cc5", + "825c28f81a0548d8a33015be789154bf", + "8659f490215949499279c79a88f2f5f6", + "443f138f57b7475e86abb0440c7641f1", + "134d957583334445a3beed87ed4e73d0", + "022c835c4fdd4e70b4b5744139a34efd", + "619cfc09f622408e9cca7a75ae6d6932", + "10a0663b7fa54385a28fe38ba2dee207", + "5deb72b8d7ca4b3da2bb497ca5e96b31", + "af97bf4c98d64bea9b1a32bde7295221", + "04dba582b14d493583388ac07befa60c", + "a40ea53e44144e3cb470d49d81d15727", + "33436687b7794410aa29d75217e23dfe", + "fb4d7013c5a94b2ab7e277011529a0f2", + "4427e78be36242bb8dddd20bb7034922", + "92d6ac7839ba423b8c8c8e320b746089", + "54a1a6c0c9f04093bbc6119323d76055", + "6bcc3429e224490693bf89550210ceb9", + "0cb45c3824864477ac81407f43abf97f" + ] + }, + "outputId": "d6c8bcbe-b950-4197-b764-c5f395eb8b23" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Unsloth: If you want to finetune Gemma 2, install flash-attn to make it faster!\n", + "To install flash-attn, do the below:\n", + "\n", + "pip install --no-deps --upgrade \"flash-attn>=2.6.3\"\n", + "==((====))== Unsloth 2025.1.7: Fast Gemma2 patching. Transformers: 4.47.1.\n", + " \\\\ /| GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.564 GB. Platform: Linux.\n", + "O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 8.0. CUDA Toolkit: 12.1. Triton: 3.1.0\n", + "\\ / Bfloat16 = TRUE. FA [Xformers = 0.0.29.post1. FA2 = False]\n", + " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n", + "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "model.safetensors.index.json: 0%| | 0.00/39.1k [00:00 0 ! Suggested 8, 16, 32, 64, 128\n", + " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", + " \"gate_proj\", \"up_proj\", \"down_proj\",],\n", + " lora_alpha = 16,\n", + " lora_dropout = 0, # Supports any, but = 0 is optimized\n", + " bias = \"none\", # Supports any, but = \"none\" is optimized\n", + " # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n", + " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n", + " random_state = 3407,\n", + " use_rslora = False, # We support rank stabilized LoRA\n", + " loftq_config = None, # And LoftQ\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "35603404-a7a0-4f24-92de-fd778500df99", + "metadata": { + "id": "35603404-a7a0-4f24-92de-fd778500df99", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a5191689-c7d9-4500-dab1-8d7991d4bdbd" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: datasets in /usr/local/lib/python3.11/dist-packages (3.2.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (4.67.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from datasets) (3.17.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from datasets) (1.26.4)\n", + "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (17.0.0)\n", + "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.3.8)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets) (2.2.2)\n", + "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.11/dist-packages (from datasets) (2.32.3)\n", + "Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets) (3.5.0)\n", + "Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.70.16)\n", + "Requirement already satisfied: fsspec<=2024.9.0,>=2023.1.0 in /usr/local/lib/python3.11/dist-packages (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets) (2024.9.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets) (3.11.11)\n", + "Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from datasets) (0.27.1)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from datasets) (24.2)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from datasets) (6.0.2)\n", + "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (2.4.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.3.2)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (24.3.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.5.0)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (6.1.0)\n", + "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (0.2.1)\n", + "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets) (1.18.3)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.32.2->datasets) (2024.12.14)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2024.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets) (2025.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.17.0)\n" + ] + } + ], + "source": [ + "!pip install datasets tqdm\n", + "import pandas as pd\n", + "from datasets import load_dataset\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "2c49fafe-1e9a-4e29-8d85-94ff79f8c9c0", + "metadata": { + "id": "2c49fafe-1e9a-4e29-8d85-94ff79f8c9c0" + }, + "outputs": [], + "source": [ + "FastLanguageModel.for_inference(model)\n", + "from tqdm import tqdm\n", + "tqdm.pandas()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "1749c745-d1fb-430b-9469-4913bb2a6cb5", + "metadata": { + "id": "1749c745-d1fb-430b-9469-4913bb2a6cb5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 441 + }, + "outputId": "2f687264-eede-43da-9cec-523b97a16fa8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "14042\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Input Output \\\n", + "0 Q पर दिए गए क्षेत्र विस्तार Q(sqrt(2), sqrt(3)... B \n", + "1 मान लीजिए S_5 में p = (1, 2, 5, 4)(2, 3) है. S... C \n", + "2 दिए गए बहुपद के संकेतित परिमित क्षेत्र में गुण... D \n", + "3 कथन 1 | नॉन-एबेलियन ग्रुप का एक फ़ैक्टर ग्रुप ... B \n", + "4 दिए गए बहुपद रिंग में दिए गए बहुपदों का गुणनफल... B \n", + "... ... ... \n", + "14037 चीन और कोरिया में धार्मिक परम्पराओं का मुख्य क... A \n", + "14038 हान राजवंश के समय सूखे के दौरान आम लोग किससे अ... C \n", + "14039 धर्मशास्त्रीय शब्द होमोओसिओस का अर्थ निम्नलिखि... B \n", + "14040 जापानी मूल मिथक के अनुसार, अमातरासु को किसने अ... B \n", + "14041 ऑगस्टस का नुमेन निम्नलिखित में से किस विशेषता ... A \n", + "\n", + " Sub-Domain Dataset \n", + "0 abstract_algebra MMLU \n", + "1 abstract_algebra MMLU \n", + "2 abstract_algebra MMLU \n", + "3 abstract_algebra MMLU \n", + "4 abstract_algebra MMLU \n", + "... ... ... \n", + "14037 world_religions MMLU \n", + "14038 world_religions MMLU \n", + "14039 world_religions MMLU \n", + "14040 world_religions MMLU \n", + "14041 world_religions MMLU \n", + "\n", + "[14042 rows x 4 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InputOutputSub-DomainDataset
0Q पर दिए गए क्षेत्र विस्तार Q(sqrt(2), sqrt(3)...Babstract_algebraMMLU
1मान लीजिए S_5 में p = (1, 2, 5, 4)(2, 3) है. S...Cabstract_algebraMMLU
2दिए गए बहुपद के संकेतित परिमित क्षेत्र में गुण...Dabstract_algebraMMLU
3कथन 1 | नॉन-एबेलियन ग्रुप का एक फ़ैक्टर ग्रुप ...Babstract_algebraMMLU
4दिए गए बहुपद रिंग में दिए गए बहुपदों का गुणनफल...Babstract_algebraMMLU
...............
14037चीन और कोरिया में धार्मिक परम्पराओं का मुख्य क...Aworld_religionsMMLU
14038हान राजवंश के समय सूखे के दौरान आम लोग किससे अ...Cworld_religionsMMLU
14039धर्मशास्त्रीय शब्द होमोओसिओस का अर्थ निम्नलिखि...Bworld_religionsMMLU
14040जापानी मूल मिथक के अनुसार, अमातरासु को किसने अ...Bworld_religionsMMLU
14041ऑगस्टस का नुमेन निम्नलिखित में से किस विशेषता ...Aworld_religionsMMLU
\n", + "

14042 rows × 4 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 14042,\n \"fields\": [\n {\n \"column\": \"Input\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 13981,\n \"samples\": [\n \"\\u092c\\u0941\\u0928\\u094d\\u092f\\u093e\\u0935\\u093e\\u092f\\u0930\\u0938 \\u092a\\u0930\\u093f\\u0935\\u093e\\u0930 \\u0915\\u0940 \\u090f\\u0915 \\u092a\\u094d\\u0930\\u092e\\u0941\\u0916 \\u0935\\u093f\\u0936\\u0947\\u0937\\u0924\\u093e \\u0915\\u094c\\u0928 \\u0938\\u0940 \\u0939\\u0948? ### A) \\u092c\\u094c\\u0928\\u094b\\u0902, \\u092e\\u091a\\u094d\\u091b\\u0930\\u094b\\u0902, \\u0930\\u0947\\u0924 \\u0915\\u0940 \\u092e\\u0915\\u094d\\u0916\\u093f\\u092f\\u094b\\u0902, \\u0915\\u0941\\u091f\\u0915\\u0940 \\u0915\\u0947 \\u0932\\u0917\\u093e\\u0924\\u093e\\u0930 \\u0938\\u0902\\u0915\\u094d\\u0930\\u092e\\u0923 \\u0938\\u0947 \\u092c\\u0922\\u093c\\u0928\\u093e B) \\u092e\\u0941\\u0916\\u094d\\u092f \\u0930\\u0942\\u092a \\u0938\\u0947 \\u092e\\u091a\\u094d\\u091b\\u0930\\u094b\\u0902 \\u0938\\u0947 \\u092b\\u0948\\u0932\\u0928\\u093e C) \\u0906\\u0928\\u0941\\u0935\\u0902\\u0936\\u093f\\u0915 \\u092a\\u0941\\u0928\\u0930\\u094d\\u0938\\u0902\\u092f\\u094b\\u091c\\u0928 \\u092f\\u093e \\u092a\\u0941\\u0928\\u0930\\u094d\\u0935\\u093f\\u0928\\u094d\\u092f\\u093e\\u0938 D) \\u091a\\u0942\\u0939\\u094b\\u0902 \\u0915\\u0947 \\u0915\\u093e\\u091f\\u0928\\u0947 \\u0938\\u0947 \\u092e\\u0928\\u0941\\u0937\\u094d\\u092f\\u094b\\u0902 \\u092e\\u0947\\u0902 \\u092b\\u0948\\u0932\\u093e\\u0935 ### MCQ ### \",\n \"70 \\u0935\\u0930\\u094d\\u0937\\u0940\\u092f \\u090f\\u0915 \\u092e\\u0939\\u093f\\u0932\\u093e \\u0905\\u092a\\u0928\\u0947 \\u0939\\u093e\\u0925\\u094b\\u0902 \\u0915\\u0947 \\u0915\\u0902\\u092a\\u0928 \\u0915\\u0940 \\u0938\\u092e\\u0938\\u094d\\u092f\\u093e \\u0915\\u0947 \\u0915\\u093e\\u0930\\u0923 \\u0915\\u093e\\u0930\\u094d\\u092f\\u093e\\u0932\\u092f \\u0906\\u0924\\u0940 \\u0939\\u0948\\u0964 \\u092f\\u0939 \\u0915\\u0902\\u092a\\u0928 \\u0909\\u0938\\u0915\\u0947 \\u091c\\u0940\\u0935\\u0928 \\u0915\\u0947 \\u0905\\u0927\\u093f\\u0915\\u093e\\u0902\\u0936 \\u0938\\u092e\\u092f \\u0938\\u0947 \\u092e\\u094c\\u091c\\u0942\\u0926 \\u0939\\u0948 \\u0914\\u0930 \\u0936\\u0941\\u0930\\u0942 \\u092e\\u0947\\u0902 \\u0939\\u0932\\u094d\\u0915\\u093e \\u0925\\u093e \\u0914\\u0930 \\u0915\\u0947\\u0935\\u0932 \\u0924\\u092d\\u0940 \\u0939\\u094b\\u0924\\u093e \\u0925\\u093e \\u091c\\u092c \\u0935\\u0939 \\u0925\\u0915\\u0940 \\u0939\\u0941\\u0908 \\u092f\\u093e \\u0924\\u0928\\u093e\\u0935\\u0917\\u094d\\u0930\\u0938\\u094d\\u0924 \\u0939\\u094b\\u0924\\u0940 \\u0925\\u0940\\u0964 \\u092a\\u093f\\u091b\\u0932\\u0947 \\u092e\\u0939\\u0940\\u0928\\u0947 \\u0915\\u0947 \\u0926\\u094c\\u0930\\u093e\\u0928 \\u0915\\u0902\\u092a\\u0928 \\u0905\\u0927\\u093f\\u0915 \\u0927\\u094d\\u092f\\u093e\\u0928 \\u0926\\u0947\\u0928\\u0947 \\u092f\\u094b\\u0917\\u094d\\u092f \\u0914\\u0930 \\u0932\\u0917\\u093e\\u0924\\u093e\\u0930 \\u0939\\u094b \\u0917\\u092f\\u093e \\u0939\\u0948\\u0964 \\u0915\\u0902\\u092a\\u0928 \\u0915\\u0940 \\u0938\\u092e\\u0938\\u094d\\u092f\\u093e \\u0915\\u0947 \\u0915\\u093e\\u0930\\u0923 \\u0905\\u092c \\u0935\\u0939 \\u0905\\u0928\\u094d\\u092f \\u0932\\u094b\\u0917\\u094b\\u0902 \\u0915\\u0947 \\u0938\\u093e\\u0925 \\u0916\\u093e\\u0928\\u0947 \\u092e\\u0947\\u0902 \\u0936\\u0930\\u094d\\u092e \\u092e\\u0939\\u0938\\u0942\\u0938 \\u0915\\u0930\\u0924\\u0940 \\u0939\\u0948\\u0964\\u092e\\u0930\\u0940\\u091c \\u092a\\u093f\\u091b\\u0932\\u0947 3 \\u0938\\u092a\\u094d\\u0924\\u093e\\u0939 \\u0938\\u0947 \\u092b\\u094d\\u0932\\u0941\\u0913\\u0915\\u094d\\u0938\\u0947\\u091f\\u0940\\u0928 \\u0932\\u0947 \\u0930\\u0939\\u0940 \\u0939\\u0948 \\u0924\\u093e\\u0915\\u093f 2 \\u092e\\u0939\\u0940\\u0928\\u0947 \\u092a\\u0939\\u0932\\u0947 \\u0909\\u0938\\u0915\\u0947 \\u092a\\u0924\\u093f \\u0915\\u0940 \\u092e\\u0943\\u0924\\u094d\\u092f\\u0941 \\u0938\\u0947 \\u0909\\u092c\\u0930\\u0928\\u0947 \\u092e\\u0947\\u0902 \\u0909\\u0938\\u0947 \\u092e\\u0926\\u0926 \\u092e\\u093f\\u0932 \\u0938\\u0915\\u0947\\u0964 \\u0932\\u093f\\u0938\\u093f\\u0928\\u094b\\u092a\\u094d\\u0930\\u093f\\u0932 \\u0938\\u0947 \\u0928\\u093f\\u092f\\u0902\\u0924\\u094d\\u0930\\u093f\\u0924 \\u0906\\u0935\\u0936\\u094d\\u092f\\u0915 \\u0909\\u091a\\u094d\\u091a \\u0930\\u0915\\u094d\\u0924\\u091a\\u093e\\u092a \\u0914\\u0930 \\u090f\\u091f\\u094b\\u0930\\u0935\\u093e\\u0938\\u094d\\u091f\\u0947\\u091f\\u093f\\u0928 \\u0938\\u0947 \\u0928\\u093f\\u092f\\u0902\\u0924\\u094d\\u0930\\u093f\\u0924 \\u0939\\u093e\\u0907\\u092a\\u0930\\u0932\\u093f\\u092a\\u093f\\u0921\\u093f\\u092e\\u093f\\u092f\\u093e \\u0915\\u0947 \\u0932\\u093f\\u090f \\u091a\\u093f\\u0915\\u093f\\u0924\\u094d\\u0938\\u093e \\u0907\\u0924\\u093f\\u0939\\u093e\\u0938 \\u092d\\u0940 \\u0909\\u0932\\u094d\\u0932\\u0947\\u0916\\u0928\\u0940\\u092f \\u0939\\u0948\\u0964 \\u091c\\u094b\\u0921\\u093c\\u094b\\u0902 \\u0915\\u0947 \\u0926\\u0930\\u094d\\u0926 \\u0915\\u0947 \\u0932\\u093f\\u090f \\u0909\\u0938\\u0915\\u0940 \\u090f\\u0915\\u092e\\u093e\\u0924\\u094d\\u0930 \\u0905\\u0928\\u094d\\u092f \\u0926\\u0935\\u093e \\u0915\\u092d\\u0940-\\u0915\\u092d\\u0940 \\u0907\\u092c\\u0941\\u092a\\u094d\\u0930\\u094b\\u092b\\u0947\\u0928 \\u0939\\u0948\\u0964 \\u0935\\u0939 \\u092e\\u0939\\u0940\\u0928\\u0947 \\u092e\\u0947\\u0902 \\u090f\\u0915 \\u0938\\u0947 \\u0926\\u094b \\u092c\\u093e\\u0930 \\u0936\\u0930\\u093e\\u092c \\u092a\\u0940\\u0924\\u0940 \\u0925\\u0940 \\u0932\\u0947\\u0915\\u093f\\u0928 \\u0905\\u092c \\u0935\\u0939 \\u0930\\u094b\\u091c\\u093e\\u0928\\u093e \\u090f\\u0915 \\u0917\\u093f\\u0932\\u093e\\u0938 \\u0935\\u093e\\u0907\\u0928 \\u092a\\u0940\\u0924\\u0940 \\u0939\\u0948 \\u0915\\u094d\\u092f\\u094b\\u0902\\u0915\\u093f, \\u0909\\u0938\\u0915\\u093e \\u0915\\u0939\\u0928\\u093e \\u0939\\u0948 \\u0915\\u093f \\u0907\\u0938\\u0938\\u0947 \\u0909\\u0938\\u0915\\u093e \\u0915\\u0902\\u092a\\u0928 \\u0915\\u092e \\u0939\\u094b\\u0924\\u093e \\u0939\\u0948\\u0964 \\u0909\\u0938\\u0915\\u0940 \\u0932\\u0902\\u092c\\u093e\\u0908 168 \\u0938\\u0947\\u092e\\u0940 (5 \\u092b\\u0940\\u091f 6 \\u0907\\u0902\\u091a) \\u0939\\u0948 \\u0914\\u0930 \\u0909\\u0938\\u0915\\u093e \\u0935\\u091c\\u0928 70 \\u0915\\u093f\\u0932\\u094b\\u0917\\u094d\\u0930\\u093e\\u092e (155 \\u092a\\u093e\\u0909\\u0902\\u0921) \\u0939\\u0948; \\u092c\\u0940\\u090f\\u092e\\u0906\\u0908 25 \\u0915\\u093f\\u0932\\u094b\\u0917\\u094d\\u0930\\u093e\\u092e/\\u092e\\u09402 \\u0939\\u0948\\u0964 \\u092e\\u0939\\u0924\\u094d\\u0935\\u092a\\u0942\\u0930\\u094d\\u0923 \\u0938\\u0902\\u0915\\u0947\\u0924 \\u0939\\u0948\\u0902 \\u0924\\u093e\\u092a\\u092e\\u093e\\u0928 36.4\\u00b0C (97.6\\u00b0F), \\u0928\\u093e\\u0921\\u093c\\u0940 80/\\u092e\\u093f\\u0928\\u091f, \\u0936\\u094d\\u0935\\u0938\\u0928 18/\\u092e\\u093f\\u0928\\u091f, \\u0924\\u0925\\u093e \\u0930\\u0915\\u094d\\u0924\\u091a\\u093e\\u092a 130/85 mm Hg. \\u0936\\u093e\\u0930\\u0940\\u0930\\u093f\\u0915 \\u092a\\u0930\\u0940\\u0915\\u094d\\u0937\\u0923 \\u0938\\u0947 \\u0926\\u094b\\u0928\\u094b\\u0902 \\u0939\\u093e\\u0925\\u094b\\u0902 \\u092e\\u0947\\u0902 \\u092e\\u0927\\u094d\\u092f\\u092e \\u0915\\u0902\\u092a\\u0928 \\u0926\\u093f\\u0916\\u093e\\u0908 \\u0926\\u0947\\u0924\\u093e \\u0939\\u0948 \\u091c\\u094b \\u0906\\u0930\\u093e\\u092e \\u0915\\u0947 \\u0938\\u092e\\u092f \\u0928\\u0939\\u0940\\u0902 \\u0939\\u094b\\u0924\\u093e\\u0964 \\u092a\\u0942\\u0930\\u094d\\u0923 \\u0930\\u0915\\u094d\\u0924 \\u0917\\u0923\\u0928\\u093e, \\u0938\\u0940\\u0930\\u092e \\u0930\\u0938\\u093e\\u092f\\u0928 \\u092a\\u094d\\u0930\\u094b\\u092b\\u093c\\u093e\\u0907\\u0932, \\u0924\\u0925\\u093e \\u0938\\u0940\\u0930\\u092e \\u0925\\u093e\\u092f\\u0930\\u0949\\u092f\\u0921 \\u092b\\u093c\\u0902\\u0915\\u094d\\u0936\\u0928 \\u092a\\u0930\\u0940\\u0915\\u094d\\u0937\\u0923 \\u0915\\u093e \\u0906\\u0926\\u0947\\u0936 \\u0926\\u093f\\u092f\\u093e \\u0917\\u092f\\u093e \\u0939\\u0948 \\u0924\\u0925\\u093e \\u092a\\u0930\\u093f\\u0923\\u093e\\u092e \\u0932\\u0902\\u092c\\u093f\\u0924 \\u0939\\u0948\\u0902\\u0964 \\u0930\\u094b\\u0917\\u0940 \\u0915\\u0947 \\u0915\\u0902\\u092a\\u0928 \\u0915\\u0947 \\u092c\\u093f\\u0917\\u0921\\u093c\\u0928\\u0947 \\u0915\\u093e \\u0938\\u092c\\u0938\\u0947 \\u0938\\u0902\\u092d\\u093e\\u0935\\u093f\\u0924 \\u0915\\u093e\\u0930\\u0923 \\u0928\\u093f\\u092e\\u094d\\u0928\\u0932\\u093f\\u0916\\u093f\\u0924 \\u092e\\u0947\\u0902 \\u0938\\u0947 \\u0915\\u094c\\u0928 \\u0938\\u093e \\u0939\\u0948? ### A) \\u092b\\u094d\\u0932\\u0941\\u0913\\u0915\\u094d\\u0938\\u0947\\u091f\\u0940\\u0928 \\u0925\\u0947\\u0930\\u0947\\u092a\\u0940 \\u0915\\u093e \\u092a\\u094d\\u0930\\u0924\\u093f\\u0915\\u0942\\u0932 \\u092a\\u094d\\u0930\\u092d\\u093e\\u0935 B) \\u0936\\u094b\\u0915 \\u092a\\u094d\\u0930\\u0924\\u093f\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e C) \\u092a\\u094d\\u0930\\u093e\\u0930\\u0902\\u092d\\u093f\\u0915 \\u092a\\u093e\\u0930\\u094d\\u0915\\u093f\\u0902\\u0938\\u0928 \\u0930\\u094b\\u0917 D) \\u0936\\u0930\\u093e\\u092c \\u0915\\u0940 \\u0916\\u092a\\u0924 \\u092e\\u0947\\u0902 \\u0935\\u0943\\u0926\\u094d\\u0927\\u093f ### MCQ ### \",\n \"\\u0932\\u0917\\u092d\\u0917 \\u0915\\u093f\\u0924\\u0928\\u0947 \\u0936\\u094b\\u0915\\u0917\\u094d\\u0930\\u0938\\u094d\\u0924 \\u0935\\u094d\\u092f\\u0915\\u094d\\u0924\\u093f\\u092f\\u094b\\u0902 \\u0915\\u094b \\u0915\\u0941\\u091b \\u092a\\u0947\\u0936\\u0947\\u0935\\u0930 \\u092e\\u0926\\u0926 \\u0915\\u0940 \\u0906\\u0935\\u0936\\u094d\\u092f\\u0915\\u0924\\u093e \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948? ### A) 10% \\u0938\\u0947 \\u0915\\u092e B) \\u0932\\u0917\\u092d\\u0917 25% C) \\u0932\\u0917\\u092d\\u0917 \\u0906\\u0927\\u0947 D) 50% \\u0938\\u0947 \\u0905\\u0927\\u093f\\u0915 ### MCQ ### \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"C\",\n \"A\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sub-Domain\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 57,\n \"samples\": [\n \"abstract_algebra\",\n \"college_biology\",\n \"high_school_us_history\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Dataset\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"MMLU\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 59 + } + ], + "source": [ + "dataset = load_dataset(\"1-800-LLMs/Test-Collection\", data_files=\"MMMLU_H.csv\", split=\"train\")\n", + "df = dataset.to_pandas()\n", + "print(len(df))\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "251f9198-60d4-4ec1-88a8-f344234be2de", + "metadata": { + "id": "251f9198-60d4-4ec1-88a8-f344234be2de" + }, + "outputs": [], + "source": [ + "df['tok'] = df['Input'].apply(lambda x: len(tokenizer.encode(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "dbffda0c-e536-4891-8862-e1e5936eb6be", + "metadata": { + "id": "dbffda0c-e536-4891-8862-e1e5936eb6be", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "352c1273-13a0-4709-a844-4476a3e472e7" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average 'tok' value: 180.577624270047\n", + "Max 'tok' value: 1917\n" + ] + } + ], + "source": [ + "print(f\"Average 'tok' value: {df['tok'].mean()}\")\n", + "print(f\"Max 'tok' value: {df['tok'].max()}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "9409ad7f-697c-4533-8d2f-399928ca9033", + "metadata": { + "id": "9409ad7f-697c-4533-8d2f-399928ca9033" + }, + "outputs": [], + "source": [ + "df = df.sort_values('tok', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "26544979-f1f2-4622-be64-9f8559a99460", + "metadata": { + "id": "26544979-f1f2-4622-be64-9f8559a99460", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "de543a99-9e37-410e-f42c-d24629b153d9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.55.5)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)\n", + "Requirement already satisfied: numpy>=1.23 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.26.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (24.2)\n", + "Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (11.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n" + ] + } + ], + "source": [ + "!pip install matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "8ce90df6-271e-460b-97fe-30a2480c78b6", + "metadata": { + "id": "8ce90df6-271e-460b-97fe-30a2480c78b6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "outputId": "ed4e326c-1991-4a98-c63d-5e76c9c67608" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfVdJREFUeJzt3X18zfX/x/Hn2cXZhdlmmJnYhqK5JhdLroq5WLrSt0KhRPmRUEIXclERXZdvpb5R3ygp6esizLUYikYukotJyaiYYWyzfX5/+O58HZvtjHN2Pmd73G+3c8v5fN7nc16f8zpmzz6fz/tjMQzDEAAAAADAqbzcXQAAAAAAlEaELQAAAABwAcIWAAAAALgAYQsAAAAAXICwBQAAAAAuQNgCAAAAABcgbAEAAACACxC2AAAAAMAFCFsAAAAA4AKELQAl7uDBg7JYLJo5c6a7S7msmTNnymKx6ODBg+4uxc7UqVNVs2ZNeXt7q3Hjxi59r9WrV8tisejLL7906fvAMadPn1Z4eLhmzZrl7lKczqx/30pav379FB0dbbfMYrFo3LhxLn3f9957TzVq1FBmZqZL3wcoiwhbAJwq75emH374wd2lFGjcuHGyWCy2R2BgoGJjY/Xss88qPT3dKe8xe/ZsvfHGG07Z1sWWLVump556Sq1bt9aMGTP00ksv5RuTF5AceXiic+fO6fXXX1fLli0VEhIif39/XXfddRoyZIh++eUXd5cnSdqwYYPGjRuntLQ0p273zTffVPny5XXffffZLf/uu+/UtWtXVatWTf7+/qpRo4a6d++u2bNnO/X9MzIyNG7cOK1evdqp271STz31lCwWi+699153l+Lx+vXrp6ysLL3//vvuLgUodXzcXQCAsicqKkpnz56Vr6+v22p49913FRQUpNOnT2vZsmV68cUXtXLlSq1fv/6qg8js2bO1Y8cODRs2zDnF/tfKlSvl5eWlf/3rX7JarQWOuf766/Xvf//bbtmYMWMUFBSkZ555xqn1lLS//vpLXbp00ZYtW3TrrbeqV69eCgoK0p49e/T5559r+vTpysrKcneZ2rBhg8aPH69+/fopNDTUKdvMzs7Wm2++qeHDh8vb29u2fO7cubr33nvVuHFjPf7446pQoYJSUlK0du1affDBB+rVq5dT3l+6ELbGjx8vSWrfvr3TtnslDMPQZ599pujoaC1YsECnTp1S+fLl3VqTq5w9e1Y+Pq79dc3f3199+/bVa6+9pscee8xj/2cMYEaELQAlzmKxyN/f36013H333apUqZIk6dFHH1WPHj00b948bdy4UXFxcW6t7XKOHTumgICAywYtSapSpYruv/9+u2WTJ09WpUqV8i33NP369dOPP/6oL7/8Uj169LBbN3HiRI8Pk4VZuHCh/vzzT91zzz12y8eNG6fY2Fht3Lgx3/fi2LFjTnnv3NxcU4TYi61evVq///67Vq5cqc6dO2vevHnq27evu8tyiZL6WXnPPfdoypQpWrVqlW6++eYSeU+gLOA0QgAlrqBrtvr166egoCAdPnxYd9xxh4KCglS5cmU9+eSTysnJsXt9bm6u3njjDdWrV0/+/v6qUqWKHnnkEZ04ceKKa8r75SIlJaXQcf/85z9Vr149+fn5KTIyUoMHD7Y7Xax9+/ZatGiRfv31V9vpepdeg3Gp8+fPa+LEiapVq5b8/PwUHR2tp59+2u76CYvFohkzZujMmTO27V7NNW8HDhzQP/7xD4WFhSkwMFCtWrXSokWLinxdZmambr31VoWEhGjDhg2SHO9HdHS0br31Vn333Xdq0aKF/P39VbNmTX3yySdFvu+mTZu0aNEi9e/fP1/QkiQ/Pz+98sordstWrlypNm3aqFy5cgoNDdXtt9+u3bt3240p6BoZ6X+nm17MYrFoyJAhmj9/vurXry8/Pz/Vq1dPS5YssXvdyJEjJUkxMTG2XuVdi5SYmKibbrpJoaGhCgoKUp06dfT0008Xuf/z589XdHS0atWqZbd8//79at68eYEBPDw83O75mTNn9MQTT6h69ery8/NTnTp19Morr8gwjAL3c9asWbbv+nvvvafKlStLksaPH2/br4uvJfr555919913KywsTP7+/rrhhhv0n//8J19dO3fu1M0336yAgABdc801euGFF5Sbm1vkZ3CxWbNmKTY2Vh06dFDHjh0vex3b22+/rXr16ikwMFAVKlTQDTfckO/0ysOHD6t///6KjIyUn5+fYmJiNGjQILuAmZaWpmHDhtk+u9q1a+vll1+2qzvv59orr7yi6dOn2/4+N2/eXN9//32+2vK+R/7+/qpfv76+/vrrAvfh0s8577u5b98+29HTkJAQPfjgg8rIyLB77dmzZzV06FBVqlRJ5cuX12233abDhw8XeB1Ys2bNFBYWpm+++abAOgBcGY5sATCNnJwcde7cWS1bttQrr7yi5cuX69VXX1WtWrU0aNAg27hHHnlEM2fO1IMPPqihQ4cqJSVF77zzjn788UetX7/+ik5P3L9/vySpYsWKlx0zbtw4jR8/Xh07dtSgQYO0Z88evfvuu/r+++9t7/vMM8/o5MmT+v333/X6669LkoKCggp974cfflgff/yx7r77bj3xxBPatGmTJk2apN27d9t+Afv3v/+t6dOna/Pmzfrwww8lSTfeeGOx91OSjh49qhtvvFEZGRkaOnSoKlasqI8//li33XabvvzyS915550Fvu7s2bO6/fbb9cMPP2j58uVq3ry5pOL1Y9++fbr77rvVv39/9e3bVx999JH69eunZs2aqV69epetOe+X9gceeMChfVy+fLm6du2qmjVraty4cTp79qzefvtttW7dWlu3bi0yAF/Od999p3nz5un//u//VL58eb311lvq0aOHDh06pIoVK+quu+7SL7/8os8++0yvv/667ehp5cqVtXPnTt16661q2LChJkyYID8/P+3bt0/r168v8n03bNigpk2b5lseFRWlFStW6Pfff9c111xz2dcbhqHbbrtNq1atUv/+/dW4cWMtXbpUI0eO1OHDh23f1TwrV67UF198oSFDhqhSpUpq1KiR3n33XQ0aNEh33nmn7rrrLklSw4YNJV0IUK1bt1a1atU0evRolStXTl988YXuuOMOffXVV7bvVGpqqjp06KDz58/bxk2fPl0BAQGONUAXAv9XX32lJ554QpLUs2dPPfjgg0pNTVVERIRt3AcffKChQ4fq7rvv1uOPP65z585p+/bt2rRpk+30yj/++EMtWrRQWlqaBg4cqLp16+rw4cP68ssvlZGRIavVqoyMDLVr106HDx/WI488oho1amjDhg0aM2aMjhw5ku/6zNmzZ+vUqVN65JFHZLFYNGXKFN111106cOCA7e/CsmXL1KNHD8XGxmrSpEn6+++/9eCDDxbaw0vdc889iomJ0aRJk7R161Z9+OGHCg8P18svv2wb069fP33xxRd64IEH1KpVK61Zs0YJCQmX3WbTpk0d+j4CKAYDAJxoxowZhiTj+++/v+yYlJQUQ5IxY8YM27K+ffsakowJEybYjW3SpInRrFkz2/N169YZkoxZs2bZjVuyZEmByy/1/PPPG5KMPXv2GH/++aeRkpJivP/++4afn59RpUoV48yZM3b7kZKSYhiGYRw7dsywWq1GfHy8kZOTY9veO++8Y0gyPvroI9uyhIQEIyoqqtA68iQnJxuSjIcffthu+ZNPPmlIMlauXGlb1rdvX6NcuXIObfdi9erVM9q1a2d7PmzYMEOSsW7dOtuyU6dOGTExMUZ0dLRt/1atWmVIMubOnWucOnXKaNeunVGpUiXjxx9/tL2uOP2IiooyJBlr1661LTt27Jjh5+dnPPHEE4Xuw5133mlIMk6cOOHQPjdu3NgIDw83/v77b9uybdu2GV5eXkafPn1sy/r27Vtgr/K+JxeTZFitVmPfvn1225RkvP3227ZlU6dOtfvu5Hn99dcNScaff/7p0D7kyc7ONiwWS4Gf0b/+9S9bXR06dDCee+45Y926dXbfUcMwjPnz5xuSjBdeeMFu+d13321YLBa7fZJkeHl5GTt37rQb++effxqSjOeffz5fHbfccovRoEED49y5c7Zlubm5xo033mhce+21tmV5371NmzbZlh07dswICQkp8DMryJdffmlIMvbu3WsYhmGkp6cb/v7+xuuvv2437vbbbzfq1atX6Lb69OljeHl5FfjzKjc31zAMw5g4caJRrlw545dffrFbP3r0aMPb29s4dOiQYRj/+7lWsWJF4/jx47Zx33zzjSHJWLBggW1Z48aNjapVqxppaWm2ZcuWLTMk5fs+XvqZ5303H3roIbtxd955p1GxYkXb8y1bthiSjGHDhtmN69ev32X7OHDgQCMgICDfcgBXjtMIAZjKo48+ave8TZs2OnDggO353LlzFRISok6dOumvv/6yPZo1a6agoCCtWrXKofepU6eOKleurJiYGD3yyCOqXbu2Fi1apMDAwALHL1++XFlZWRo2bJi8vP73o3PAgAEKDg526BS8gixevFiSNGLECLvlef/X/kq3W9R7tmjRQjfddJNtWVBQkAYOHKiDBw9q165dduNPnjyp+Ph4/fzzz1q9erXdlPPF7UdsbKzatGlje165cmXVqVPHrscFyZsp0pFJEI4cOaLk5GT169dPYWFhtuUNGzZUp06dbJ/5lejYsaPdqXwNGzZUcHBwkfVLsk2W8c033xTrtLnjx4/LMAxVqFAh37qHHnpIS5YsUfv27fXdd99p4sSJatOmja699lrbaZ7ShZ57e3tr6NChdq9/4oknZBiGvv32W7vl7dq1U2xsrMP1rVy5Uvfcc49OnTpl+w78/fff6ty5s/bu3avDhw/b6mjVqpVatGhhe33lypXVu3dvhz+PWbNm6YYbblDt2rUlXfhOJCQk5DuVMDQ0VL///nuBp/BJF05/nT9/vrp3764bbrgh3/q800jnzp2rNm3aqEKFCnbf8Y4dOyonJ0dr1661e929995r16u873vedyTv+9m3b1+FhITYxnXq1Mnhz1wq+Gfl33//bfu7knd66//93//ZjXvssccuu80KFSro7Nmz+U5HBHDlOI0QgGn4+/vbrgvJU6FCBbtrf/bu3auTJ0/mux4lj6OTAnz11VcKDg6Wr6+vrrnmmnzXwlzq119/lXQhpF3MarWqZs2atvXF9euvv8rLy8v2i2OeiIgIhYaGXvF2i3rPli1b5lt+/fXX29bXr1/ftnzYsGE6d+6cfvzxx3yn+hW3HzVq1Mg35tIeFyQ4OFiSdOrUqSJn+Ltcr6QL+7h06VKdOXNG5cqVK3Q7BbnS+qULv4R/+OGHevjhhzV69Gjdcsstuuuuu3T33XfbBfjLMS65tipP586d1blzZ2VkZGjLli2aM2eO3nvvPd166636+eefFR4erl9//VWRkZH5wurFPb9YTExMkfXk2bdvnwzD0HPPPafnnnuuwDHHjh1TtWrVLvvdK6hXBUlLS9PixYs1ZMgQ7du3z7a8devW+uqrr/TLL7/ouuuukySNGjVKy5cvV4sWLVS7dm3Fx8erV69eat26tSTpzz//VHp6ut13vSB79+7V9u3b8/1sunjfLnbpdyQveOV9R/I+62uvvTbfturUqaOtW7cWWo8j7xMcHGz72XJpLy/9WXOxvO8YsxECzkPYAmAaF09pfTm5ubmF3tj1cr8QXapt27a262nMwMy/3Nx+++36/PPPNXnyZH3yySd2waC4/bhcjy8XJPLUrVtXkvTTTz/ZHRm7Wpf73C+dlCXPldYvSQEBAVq7dq1WrVqlRYsWacmSJZozZ45uvvlmLVu27LLbDgsLk8ViKTLQBQYGqk2bNmrTpo0qVaqk8ePH69tvv72iWfqKcw1V3lG6J598Up07dy5wTGG/4BfH3LlzlZmZqVdffVWvvvpqvvWzZs2yTU9//fXXa8+ePVq4cKGWLFmir776Sv/85z81duxY2xhH5ObmqlOnTnrqqacKXJ8X7vJczXekOFzxPidOnFBgYGCx+g+gcIQtAB6lVq1aWr58uVq3bl2ivxBERUVJkvbs2aOaNWvalmdlZSklJUUdO3a0LStOcIqKilJubq727t1rO8ogXZjEIi0tzfa+zhQVFaU9e/bkW/7zzz/b1l/sjjvuUHx8vPr166fy5cvr3Xffta0rqX50795dkyZN0qefflpk2Lq4V5f6+eefValSJdtRrQoVKhR48+GrOaJYWP+9vLx0yy236JZbbtFrr72ml156Sc8884xWrVpl9x26mI+Pj2rVqlXkTJkXyzst7siRI5IufCbLly/Pdz+qy/W8OPuV9/fB19f3svuQJyoqSnv37s23vKBeFWTWrFmqX7++nn/++Xzr3n//fc2ePdsuSJUrV0733nuv7r33XmVlZemuu+7Siy++qDFjxqhy5coKDg7Wjh07Cn3PWrVq6fTp00Xum6PyPuur+RwcfZ/c3FylpKTYHUW7+IjgpVJSUux+DgG4elyzBcCj3HPPPcrJydHEiRPzrTt//nyBvzg7Q8eOHWW1WvXWW2/Z/Z/jf/3rXzp58qTdDF/lypXTyZMnHdput27dJCnfjGavvfaaJBU6c9iV6tatmzZv3qykpCTbsjNnzmj69OmKjo4u8LqRPn366K233tJ7772nUaNG2ZaXVD/i4uLUpUsXffjhh5o/f36+9VlZWXryySclSVWrVlXjxo318ccf273/jh07tGzZMttnLl34RfrkyZPavn27bdmRI0cuOw23I/KC3KX7fvz48Xxj865/u3ia/4LExcXphx9+yLd8xYoVBY7Puy4t7/S8bt26KScnR++8847duNdff10Wi0Vdu3Yt9P0l2a5nvHS/wsPD1b59e73//vu2cHexP//80/bnbt26aePGjdq8ebPd+ssdGb3Yb7/9prVr1+qee+7R3Xffne/x4IMPat++fdq0aZMk6e+//7Z7vdVqVWxsrAzDUHZ2try8vHTHHXdowYIFBX62eX/P77nnHiUlJWnp0qX5xqSlpen8+fNF1n6xi7+fF/+cSExMzHe95NXIO8r4z3/+027522+/fdnXbN269YpnOQVQMI5sAXCJjz76yO7+Q3kef/zxq9puu3bt9Mgjj2jSpElKTk5WfHy8fH19tXfvXs2dO1dvvvmm7r777qt6j4JUrlxZY8aM0fjx49WlSxfddttt2rNnj/75z3+qefPmdjcMbtasmebMmaMRI0aoefPmCgoKUvfu3QvcbqNGjdS3b19Nnz5daWlpateunTZv3qyPP/5Yd9xxhzp06OD0fRk9erQ+++wzde3aVUOHDlVYWJg+/vhjpaSk6Kuvvrrs9UNDhgxRenq6nnnmGYWEhOjpp58u0X588sknio+P11133aXu3bvrlltuUbly5bR37159/vnnOnLkiO1eW1OnTlXXrl0VFxen/v3726Z+DwkJsbu/0H333adRo0bpzjvv1NChQ5WRkaF3331X1113ncPXzlyqWbNmkqRnnnlG9913n3x9fdW9e3dNmDBBa9euVUJCgqKionTs2DH985//1DXXXGM3WUlBbr/9dv373/+2uyYpb3lMTIy6d++uWrVq6cyZM1q+fLkWLFig5s2b27533bt3V4cOHfTMM8/o4MGDatSokZYtW6ZvvvlGw4YNK/KaRenCqYWxsbGaM2eOrrvuOoWFhal+/fqqX7++pk2bpptuukkNGjTQgAEDVLNmTR09elRJSUn6/ffftW3bNknSU089pX//+9/q0qWLHn/8cdvU71FRUXaBtyCzZ8+2TWFfkG7dusnHx0ezZs1Sy5YtFR8fr4iICLVu3VpVqlTR7t279c477yghIcF2dO+ll17SsmXL1K5dOw0cOFDXX3+9jhw5orlz5+q7775TaGioRo4cqf/85z+69dZbbbcpOHPmjH766Sd9+eWXOnjwYLFPSZ40aZISEhJ000036aGHHtLx48dt9wQ7ffp0sbZ1Oc2aNVOPHj30xhtv6O+//7ZN/f7LL79Iyn+kcsuWLTp+/Lhuv/12p7w/gP9yyxyIAEqtvCnTL/f47bffLjv1e0HTmhc0BbdhGMb06dONZs2aGQEBAUb58uWNBg0aGE899ZTxxx9/FFpf3vaKmn770qnf87zzzjtG3bp1DV9fX6NKlSrGoEGD8k1Hfvr0aaNXr15GaGhogVM5Xyo7O9sYP368ERMTY/j6+hrVq1c3xowZYzeNtmE4b+p3wzCM/fv3G3fffbcRGhpq+Pv7Gy1atDAWLlxoN+biqd8v9tRTTxmSjHfeece2zJF+REVFGQkJCfnqa9euXb76LicjI8N45ZVXjObNmxtBQUGG1Wo1rr32WuOxxx6zm77cMAxj+fLlRuvWrY2AgAAjODjY6N69u7Fr165821y2bJlRv359w2q1GnXq1DE+/fTTy079Pnjw4Hyvj4qKMvr27Wu3bOLEiUa1atUMLy8v2/doxYoVxu23325ERkYaVqvViIyMNHr27JlvSvGCZGZmGpUqVTImTpxot/yzzz4z7rvvPqNWrVpGQECA4e/vb8TGxhrPPPOMkZ6ebjf21KlTxvDhw43IyEjD19fXuPbaa42pU6fapjgvaj8NwzA2bNhgNGvWzLBarfmmD9+/f7/Rp08fIyIiwvD19TWqVatm3HrrrcaXX35pt43t27cb7dq1M/z9/Y1q1aoZEydOtE1hX9jU7w0aNDBq1KhR6OfUvn17Izw83MjOzjbef/99o23btkbFihUNPz8/o1atWsbIkSONkydP2r3m119/Nfr06WNUrlzZ8PPzM2rWrGkMHjzYyMzMtPvsxowZY9SuXduwWq1GpUqVjBtvvNF45ZVXjKysLMMw/jf1+9SpU/PVdelnZRiG8dVXXxnXX3+94efnZ8TGxhrz5s0r8FYEl772cj/DCvqZdebMGWPw4MFGWFiYERQUZNxxxx3Gnj17DEnG5MmT7V4/atQoo0aNGvm+DwCujsUwnHzFJgAAcLqJEydqxowZ2rt3r0OTyQAFSU5OVpMmTfTpp5/aptzPzMxUdHS0Ro8efdVnHwCwxzVbAAB4gOHDh+v06dP6/PPP3V0KPMTZs2fzLXvjjTfk5eWltm3b2pbNmDFDvr6++e7dBeDqcWQLAACgFBo/fry2bNmiDh06yMfHR99++62+/fZbDRw4UO+//767ywPKBMIWAABAKZSYmKjx48dr165dOn36tGrUqKEHHnhAzzzzjHx8mCMNKAmELQAAAABwAa7ZAgAAAAAXcGvYmjRpkpo3b67y5csrPDxcd9xxR767p587d06DBw9WxYoVFRQUpB49eujo0aN2Yw4dOqSEhAQFBgYqPDxcI0eOzHeTwdWrV6tp06by8/NT7dq1NXPmTFfvHgAAAIAyzK0n7K5Zs0aDBw9W8+bNdf78eT399NOKj4/Xrl27VK5cOUkXZl9atGiR5s6dq5CQEA0ZMkR33XWX1q9fL0nKyclRQkKCIiIitGHDBh05ckR9+vSRr6+vXnrpJUlSSkqKEhIS9Oijj2rWrFlasWKFHn74YVWtWtV2h/XC5Obm6o8//lD58uXz3QQQAAAAQNlhGIZOnTqlyMhIeXkVcezKbXf4KsCxY8cMScaaNWsMwzCMtLQ0w9fX1+6Gmrt37zYkGUlJSYZhGMbixYsNLy8vIzU11Tbm3XffNYKDg203JHzqqaeMevXq2b3Xvffea3Tu3Nmhun777bdCb9LKgwcPHjx48ODBgwePsvX47bffiswRppqK5uTJk5KksLAwSdKWLVuUnZ2tjh072sbUrVtXNWrUUFJSklq1aqWkpCQ1aNBAVapUsY3p3LmzBg0apJ07d6pJkyZKSkqy20bemGHDhhVYR2ZmpjIzM23Pjf/OIZKSkqLy5cs7ZV+vRnZ2tlatWqUOHTrI19fX3eWUefTDXOiH+dATc6Ef5kI/zIeemIsZ+3Hq1CnFxMQ4lAtME7Zyc3M1bNgwtW7dWvXr15ckpaamymq1KjQ01G5slSpVlJqaahtzcdDKW5+3rrAx6enpOnv2rAICAuzWTZo0SePHj89XY1JSkgIDA698J50oMDBQmzZtcncZ+C/6YS70w3zoibnQD3OhH+ZDT8zFbP3IyMiQJIcuLzJN2Bo8eLB27Nih7777zt2laMyYMRoxYoTteXp6uqpXr674+HgFBwe7sbILsrOzlZiYqE6dOpkm4Zdl9MNc6If50BNzoR/mQj/Mh56Yixn7kZ6e7vBYU4StIUOGaOHChVq7dq2uueYa2/KIiAhlZWUpLS3N7ujW0aNHFRERYRuzefNmu+3lzVZ48ZhLZzA8evSogoOD8x3VkiQ/Pz/5+fnlW+7r62uaJkvmq6esox/mQj/Mh56YC/0wF/phPvTEXMzUj+LU4dap3w3D0JAhQ/T1119r5cqViomJsVvfrFkz+fr6asWKFbZle/bs0aFDhxQXFydJiouL008//aRjx47ZxiQmJio4OFixsbG2MRdvI29M3jYAAAAAwNncemRr8ODBmj17tr755huVL1/edo1VSEiIAgICFBISov79+2vEiBEKCwtTcHCwHnvsMcXFxalVq1aSpPj4eMXGxuqBBx7QlClTlJqaqmeffVaDBw+2HZ169NFH9c477+ipp57SQw89pJUrV+qLL77QokWL3LbvAAAAAEo3tx7Zevfdd3Xy5Em1b99eVatWtT3mzJljG/P666/r1ltvVY8ePdS2bVtFRERo3rx5tvXe3t5auHChvL29FRcXp/vvv199+vTRhAkTbGNiYmK0aNEiJSYmqlGjRnr11Vf14YcfOnSPLQAAAAC4Em49spU3pXph/P39NW3aNE2bNu2yY6KiorR48eJCt9O+fXv9+OOPxa4RAAAAAK6EW49sAQAAAEBpRdgCAAAAABcgbAEAAACACxC2AAAAAMAFCFsAAAAA4AKELQAAAABwAcIWAAAAALgAYcvD5OQa2pRyXFv+smhTynHl5BZ9rzIAAAAAJc+tNzVG8SzZcUTjF+zSkZPnJHnrk70/qGqIv57vHqsu9au6uzwAAAAAF+HIlodYsuOIBn269b9B639ST57ToE+3asmOI26qDAAAAEBBCFseICfX0PgFu1TQCYN5y8Yv2MUphQAAAICJELY8wOaU4/mOaF3MkHTk5DltTjleckUBAAAAKBRhywMcO3X5oHUl4wAAAAC4HmHLA4SX93fqOAAAAACuR9jyAC1iwhRo9S50TKDVWy1iwkqoIgAAAABFIWx5gJxcQ2ezcwodczY7hwkyAAAAABMhbHmAfycdlFFEjjKMC+MAAAAAmANhywP8ejzDqeMAAAAAuB5hywNEhQU6dRwAAAAA1yNseYAH4qLlZSl8jJflwjgAAAAA5kDY8gBWHy8NaBNT6JgBbWJk9aGdAAAAgFn4uLsAOGZMt1hJ0vR1KXaTZXhZLgStvPUAAAAAzIGw5UHGdItV42sqaNDsrSrvY+ixTnXUr3UtjmgBAAAAJkTY8jB+1gvBKtRPevDGaPkStAAAAABT4jd1D+NluTBTBrcvBgAAAMyNsOVhbGGLtAUAAACYGmHLwxi5F1LWiUxpxoaDyjqf6+aKAAAAABSEsOVBJi3epX4ffy9Jysix6KVvf1Hd577VpMW73FwZAAAAgEsxQYaHmLR4l95fm5Jvea4h23KmfwcAAADMgyNbHiDrfK4+WJc/aF3sg3UpnFIIAAAAmAhhywP8O+mgcouYECPXuDAOAAAAgDkQtjzAr8cznDoOAAAAgOsRtjxAVFigU8cBAAAAcD3Clgd4IC5aXpbCx3hZLowDAAAAYA6ELQ9g9fHSgDYxhY4Z0CZGVh/aCQAAAJgFU797iLxp3T9Yl2I3WYaX5ULQYtp3AAAAwFwIWx5kTLdYdbw+Qv94P0l+Xoae6FxH/VrX4ogWAAAAYEKELQ+TF6wCfaQHb4yWL0ELAAAAMCV+U/cwliImygAAAABgDoQtAAAAAHABwpaHMooeAgAAAMCNCFsexiLOIwQAAAA8AWELAAAAAFyAsAUAAAAALkDY8jDMRggAAAB4BreGrbVr16p79+6KjIyUxWLR/Pnz7dZbLJYCH1OnTrWNiY6Ozrd+8uTJdtvZvn272rRpI39/f1WvXl1Tpkwpid0DAAAAUIa5NWydOXNGjRo10rRp0wpcf+TIEbvHRx99JIvFoh49etiNmzBhgt24xx57zLYuPT1d8fHxioqK0pYtWzR16lSNGzdO06dPd+m+uRqzEQIAAADm5uPON+/atau6du162fURERF2z7/55ht16NBBNWvWtFtevnz5fGPzzJo1S1lZWfroo49ktVpVr149JScn67XXXtPAgQOvficAAAAAoABuDVvFcfToUS1atEgff/xxvnWTJ0/WxIkTVaNGDfXq1UvDhw+Xj8+FXUtKSlLbtm1ltVpt4zt37qyXX35ZJ06cUIUKFfJtLzMzU5mZmbbn6enpkqTs7GxlZ2c7e9eK5fz587Y/u7sWXJDXB/phDvTDfOiJudAPc6Ef5kNPzMWM/ShOLR4Ttj7++GOVL19ed911l93yoUOHqmnTpgoLC9OGDRs0ZswYHTlyRK+99pokKTU1VTExMXavqVKlim1dQWFr0qRJGj9+fL7ly5YtU2BgoLN26Yr8fkaSfCRDSkxMdGstsEc/zIV+mA89MRf6YS70w3zoibmYqR8ZGRkOj/WYsPXRRx+pd+/e8vf3t1s+YsQI258bNmwoq9WqRx55RJMmTZKfn98VvdeYMWPstpuenq7q1asrPj5ewcHBV7YDTrLrSLqmbt8oSerUqZN8fX3dWg8u/N+NxMRE+mES9MN86Im50A9zoR/mQ0/MxYz9yDvrzREeEbbWrVunPXv2aM6cOUWObdmypc6fP6+DBw+qTp06ioiI0NGjR+3G5D2/3HVefn5+BQY1X19ftzc57/RIyRz14H/oh7nQD/OhJ+ZCP8yFfpgPPTEXM/WjOHV4xH22/vWvf6lZs2Zq1KhRkWOTk5Pl5eWl8PBwSVJcXJzWrl1rd25lYmKi6tSpU+AphAAAAADgDG4NW6dPn1ZycrKSk5MlSSkpKUpOTtahQ4dsY9LT0zV37lw9/PDD+V6flJSkN954Q9u2bdOBAwc0a9YsDR8+XPfff78tSPXq1UtWq1X9+/fXzp07NWfOHL355pt2pwl6IqZ+BwAAAMzNracR/vDDD+rQoYPteV4A6tu3r2bOnClJ+vzzz2UYhnr27Jnv9X5+fvr88881btw4ZWZmKiYmRsOHD7cLUiEhIVq2bJkGDx6sZs2aqVKlSho7dqzHTvtukcXdJQAAAABwgFvDVvv27WUYhR+jGThw4GWDUdOmTbVx48Yi36dhw4Zat27dFdUIAAAAAFfCI67ZAgAAAABPQ9jyMBbOIgQAAAA8AmELAAAAAFyAsOWhmI0QAAAAMDfClofhNEIAAADAMxC2AAAAAMAFCFseitMIAQAAAHMjbHkYbmoMAAAAeAbCFgAAAAC4AGHLU3EeIQAAAGBqhC0Pw2yEAAAAgGcgbAEAAACACxC2PBRnEQIAAADmRtjyMJxFCAAAAHgGwhYAAAAAuABhCwAAAABcgLDlYZiNEAAAAPAMhC0AAAAAcAHCFgAAAAC4AGHLQzH1OwAAAGBuhC2Pw0VbAAAAgCcgbAEAAACACxC2PBXnEQIAAACmRtjyMEz9DgAAAHgGwhYAAAAAuABhy0NxFiEAAABgboQtD8NZhAAAAIBnIGwBAAAAgAsQtgAAAADABQhbHsbCdIQAAACARyBsAQAAAIALELY8FLMRAgAAAOZG2PIwnEQIAAAAeAbCFgAAAAC4AGHLQ3EaIQAAAGBuhC0Pw2SEAAAAgGcgbAEAAACACxC2PBXnEQIAAACmRtjyMBbmIwQAAAA8AmELAAAAAFyAsAUAAAAALkDY8lBcsgUAAACYG2HLwzD1OwAAAOAZCFsAAAAA4AKELQAAAABwAbeGrbVr16p79+6KjIyUxWLR/Pnz7db369dPFovF7tGlSxe7McePH1fv3r0VHBys0NBQ9e/fX6dPn7Ybs337drVp00b+/v6qXr26pkyZ4updAwAAAFDGuTVsnTlzRo0aNdK0adMuO6ZLly46cuSI7fHZZ5/Zre/du7d27typxMRELVy4UGvXrtXAgQNt69PT0xUfH6+oqCht2bJFU6dO1bhx4zR9+nSX7RcAAAAA+Ljzzbt27aquXbsWOsbPz08REREFrtu9e7eWLFmi77//XjfccIMk6e2331a3bt30yiuvKDIyUrNmzVJWVpY++ugjWa1W1atXT8nJyXrttdfsQtnFMjMzlZmZaXuenp4uScrOzlZ2dvaV7KrTnD9/XtKF2QjdXQsuyOsD/TAH+mE+9MRc6Ie50A/zoSfmYsZ+FKcWt4YtR6xevVrh4eGqUKGCbr75Zr3wwguqWLGiJCkpKUmhoaG2oCVJHTt2lJeXlzZt2qQ777xTSUlJatu2raxWq21M586d9fLLL+vEiROqUKFCvvecNGmSxo8fn2/5smXLFBgY6IK9dNzxTCmvbYmJiW6tBfboh7nQD/OhJ+ZCP8yFfpgPPTEXM/UjIyPD4bGmDltdunTRXXfdpZiYGO3fv19PP/20unbtqqSkJHl7eys1NVXh4eF2r/Hx8VFYWJhSU1MlSampqYqJibEbU6VKFdu6gsLWmDFjNGLECNvz9PR0Va9eXfHx8QoODnb2bhbL4bSzGr91nSSpU6dO8vX1dWs9uPB/NxITE+mHSdAP86En5kI/zIV+mA89MRcz9iPvrDdHmDps3XfffbY/N2jQQA0bNlStWrW0evVq3XLLLS57Xz8/P/n5+eVb7uvr6/Ym+/j897ClYY568D/0w1zoh/nQE3OhH+ZCP8yHnpiLmfpRnDo8aur3mjVrqlKlStq3b58kKSIiQseOHbMbc/78eR0/ftx2nVdERISOHj1qNybv+eWuBTMzC3c1BgAAADyCR4Wt33//XX///beqVq0qSYqLi1NaWpq2bNliG7Ny5Url5uaqZcuWtjFr1661u5AtMTFRderUKfAUQgAAAABwBreGrdOnTys5OVnJycmSpJSUFCUnJ+vQoUM6ffq0Ro4cqY0bN+rgwYNasWKFbr/9dtWuXVudO3eWJF1//fXq0qWLBgwYoM2bN2v9+vUaMmSI7rvvPkVGRkqSevXqJavVqv79+2vnzp2aM2eO3nzzTbtrsjyR4e4CAAAAABTKrWHrhx9+UJMmTdSkSRNJ0ogRI9SkSRONHTtW3t7e2r59u2677TZdd9116t+/v5o1a6Z169bZXU81a9Ys1a1bV7fccou6deumm266ye4eWiEhIVq2bJlSUlLUrFkzPfHEExo7duxlp303O04iBAAAADyDWyfIaN++vQzj8sdoli5dWuQ2wsLCNHv27ELHNGzYUOvWrSt2fQAAAABwpTzqmi38D6cRAgAAAOZG2PIwTEYIAAAAeAbCFgAAAAC4AGELAAAAAFyAsOVhLMxHCAAAAHgEwhYAAAAAuABhCwAAAABcgLDloZj6HQAAADA3wpaHYep3AAAAwDMQtgAAAADABQhbnorzCAEAAABTI2x5GM4iBAAAADwDYQsAAAAAXICw5aE4ixAAAAAwN8KWp+E8QgAAAMAjELYAAAAAwAUIWwAAAADgAoQtD2PhPEIAAADAIxC2AAAAAMAFCFseyuAIFwAAAGBqhC0PYyFjAQAAAB6BsAUAAAAALkDYAgAAAAAXIGx5GM4iBAAAADwDYQsAAAAAXICw5cEMw3B3CQAAAAAug7DlYSxMRwgAAAB4BMIWAAAAALgAYQsAAAAAXICw5WFycv93ndbGA8ftngMAAAAwD8KWB1my44hufWud7XmfmVt008srtWTHETdWBQAAAKAghC0PsWTHEQ36dKuOnsq0W5568pwGfbqVwAUAAACYDGHLA+TkGhq/YJcKOmEwb9n4Bbs4pRAAAAAwEcKWB9icclxHTp677HpD0pGT57Q55XjJFQUAAACgUIQtD3Ds1OWD1pWMAwAAAOB6hC0PEF7e36njAAAAALgeYcsDtIgJU2igb6FjQgN91SImrIQqAgAAAFAUwlYpYXF3AQAAAADsELY8wOaU40rLyC50zImMbCbIAAAAAEyEsOUBmCADAAAA8DyELQ8QFmB16jgAAAAArkfY8gA/Hz3l1HEAAAAAXI+w5QF+O5Hh1HEAAAAAXI+w5QGqVwhw6jgAAAAArufWsLV27Vp1795dkZGRslgsmj9/vm1ddna2Ro0apQYNGqhcuXKKjIxUnz599Mcff9htIzo6WhaLxe4xefJkuzHbt29XmzZt5O/vr+rVq2vKlCklsXtOUzci2KnjAAAAALieW8PWmTNn1KhRI02bNi3fuoyMDG3dulXPPfectm7dqnnz5mnPnj267bbb8o2dMGGCjhw5Yns89thjtnXp6emKj49XVFSUtmzZoqlTp2rcuHGaPn26S/fNmY5nZDl1HAAAAADX83Hnm3ft2lVdu3YtcF1ISIgSExPtlr3zzjtq0aKFDh06pBo1atiWly9fXhEREQVuZ9asWcrKytJHH30kq9WqevXqKTk5Wa+99poGDhzovJ1xofDy/k4dBwAAAMD13Bq2iuvkyZOyWCwKDQ21Wz558mRNnDhRNWrUUK9evTR8+HD5+FzYtaSkJLVt21ZW6/+mRe/cubNefvllnThxQhUqVMj3PpmZmcrMzLQ9T09Pl3Th1Mbs7MJvLuwKTa4pr4hgPx1Nz5RRwHqLpIgQPzW5prxb6ivr8j5zPntzoB/mQ0/MhX6YC/0wH3piLmbsR3Fq8Ziwde7cOY0aNUo9e/ZUcPD/rk0aOnSomjZtqrCwMG3YsEFjxozRkSNH9Nprr0mSUlNTFRMTY7etKlWq2NYVFLYmTZqk8ePH51u+bNkyBQYGOnO3HNYtwqKP0vPO+rRctMaQIalrlQwtXfKtGypDnkuPxMK96If50BNzoR/mQj/Mh56Yi5n6kZHh+AzgHhG2srOzdc8998gwDL377rt260aMGGH7c8OGDWW1WvXII49o0qRJ8vPzu6L3GzNmjN1209PTVb16dcXHx9sFvZLUTVLTnUf1wuKflZr+v6NuVUP89UzXuupcr4pb6sKF72diYqI6deokX19fd5dT5tEP86En5kI/zIV+mA89MRcz9iPvrDdHmD5s5QWtX3/9VStXriwy7LRs2VLnz5/XwYMHVadOHUVEROjo0aN2Y/KeX+46Lz8/vwKDmq+vr1ubfGvja9S1YTU1HLdEZ7Jy9fKd9XR38yh5e1mKfjFczt3fD9ijH+ZDT8yFfpgL/TAfemIuZupHceow9X228oLW3r17tXz5clWsWLHI1yQnJ8vLy0vh4eGSpLi4OK1du9bu3MrExETVqVOnwFMIzc7byyKrj7ckqcE1IQQtAAAAwKTcGrZOnz6t5ORkJScnS5JSUlKUnJysQ4cOKTs7W3fffbd++OEHzZo1Szk5OUpNTVVqaqqysi5McZ6UlKQ33nhD27Zt04EDBzRr1iwNHz5c999/vy1I9erVS1arVf3799fOnTs1Z84cvfnmm3anCXqSnFxD2Tm5kqRtv6UpJ7egKTMAAAAAuJtbTyP84Ycf1KFDB9vzvADUt29fjRs3Tv/5z38kSY0bN7Z73apVq9S+fXv5+fnp888/17hx45SZmamYmBgNHz7cLkiFhIRo2bJlGjx4sJo1a6ZKlSpp7NixHjPt+8WW7Dii8Qt26XRmjiRpzPxdemvVAT3fPVZd6ld1c3UAAAAALubWsNW+fXsZxuWPzBS2TpKaNm2qjRs3Fvk+DRs21Lp164pdn5ks2XFEgz7dmm/q99ST5zTo06169/6mBC4AAADAREx9zRYuyMk1NH7BrgLvsZW3bPyCXZxSCAAAAJgIYcsDbE45riMnz112vSHpyMlz2pxyvOSKAgAAAFAowpYHOHbq8kHrSsYBAAAAcD3ClgcIL+/v1HEAAAAAXI+w5QFaxIQpNLDwm6eFBvqqRUxYCVUEAAAAoCiErVKCWxsDAAAA5kLY8gCbU44rLSO70DEnMrKZIAMAAAAwEcKWB2CCDAAAAMDzELY8ABNkAAAAAJ6HsOUBWsSEqWqI/2Wvy7JIqhrizwQZAAAAgIkQtjyAt5dFz3ePlZR/Ioy85893j5W3F9NkAAAAAGZB2PIQXepX1bv3N1VEiP2pghEh/nr3/qbqUr+qmyoDAAAAUBAfdxcAx3WpX1WdYiPU5uWV+uPkOY3pcp0eblubI1oAAACACXFky8N4e1kU5HchI9eNKE/QAgAAAEyq2GHr5ptvVlpaWr7l6enpuvnmm51RE4pg+W++yjXcWwcAAACAyyt22Fq9erWysrLyLT937pzWrVvnlKJQOMt/05Yh0hYAAABgVg5fs7V9+3bbn3ft2qXU1FTb85ycHC1ZskTVqlVzbnUoUN6JgwZZCwAAADAth8NW48aNZbFYZLFYCjxdMCAgQG+//bZTi0PBvP57PNIgbQEAAACm5XDYSklJkWEYqlmzpjZv3qzKlSvb1lmtVoWHh8vb29slRcKe5b/HtrhmCwAAADAvh8NWVFSUJCk3N9dlxcAxeRMQkrUAAAAA87qi+2zt3btXq1at0rFjx/KFr7FjxzqlMBQiL2xxaAsAAAAwrWKHrQ8++ECDBg1SpUqVFBERYZsZT7owSx5hy/W8bLMRAgAAADCrYoetF154QS+++KJGjRrlinpQhJxcQ6fPnZck/Zx6SvH1DW5sDAAAAJhQse+zdeLECf3jH/9wRS0owpIdR9R68grt+/OMJOnNlfvVevIKLdlxxM2VAQAAALhUscPWP/7xDy1btswVtaAQS3Yc0aOfblVqeqbd8tT0TD366VYCFwAAAGAyxT6NsHbt2nruuee0ceNGNWjQQL6+vnbrhw4d6rTicEFOrqHR834qdMzoeT+pU2wEpxQCAAAAJlHssDV9+nQFBQVpzZo1WrNmjd06i8VC2HKBjfv/VlpGdqFj0jKytXH/32p9baUSqgoAAABAYYodtlJSUlxRBwqRdOAvh8cRtgAAAABzKPY1W3AHR08N5BRCAAAAwCyKfWTroYceKnT9Rx99dMXFoGBxtSrqnVX7HBoHAAAAwByKHbZOnDhh9zw7O1s7duxQWlqabr75ZqcVhv9pHh0mi0UyCrmLscVyYRwAAAAAcyh22Pr666/zLcvNzdWgQYNUq1YtpxQFe1t+PVFo0JIuBLEtv57g6BYAAABgEk65ZsvLy0sjRozQ66+/7ozN4RLHTp1z6jgAAAAArue0CTL279+v8+fPO2tzuEh4eX+njgMAAADgesU+jXDEiBF2zw3D0JEjR7Ro0SL17dvXaYXhf5pFVZBFUmFnElr+Ow4AAACAORQ7bP344492z728vFS5cmW9+uqrRc5UiCvzfcrxQoOWdCGIfZ9ynPtsAQAAACZR7LC1atUqV9SBQnBTYwAAAMDzFDts5fnzzz+1Z88eSVKdOnVUuXJlpxUFe7lFHdb6r73HTru2EAAAAAAOK/YEGWfOnNFDDz2kqlWrqm3btmrbtq0iIyPVv39/ZWRkuKLGMq9CoNWhcat+PqYcR5MZAAAAAJcqdtgaMWKE1qxZowULFigtLU1paWn65ptvtGbNGj3xxBOuqLHMq1Tez6FxWTmGNux17JRDAAAAAK5V7LD11Vdf6V//+pe6du2q4OBgBQcHq1u3bvrggw/05ZdfuqLGMi8i2PEp3b/68XcXVgIAAADAUcUOWxkZGapSpUq+5eHh4ZxG6CItYsJk9XZs7JlM7nUGAAAAmEGxw1ZcXJyef/55nTt3zrbs7NmzGj9+vOLi4pxaHC7w9rKoVc2KDo2tUoyjYAAAAABcp9izEb755pvq3LmzrrnmGjVq1EiStG3bNvn7+2vp0qVOLxAX3Naomtbu/bvIcY2rh7q+GAAAAABFKnbYql+/vvbu3atZs2bp559/liT17NlTvXv3VkBAgNMLxAUnz2Y7dRwAAAAA1yr2aYSSFBgYqAEDBujVV1/Vq6++qocffviKgtbatWvVvXt3RUZGymKxaP78+XbrDcPQ2LFjVbVqVQUEBKhjx47au3ev3Zjjx4+rd+/eCg4OVmhoqPr376/Tp+3vN7V9+3a1adNG/v7+ql69uqZMmVLsWt0tLMixGQkdHQcAAADAtRwOW1u2bFGHDh2Unp6eb93JkyfVoUMHbdu2rVhvfubMGTVq1EjTpk0rcP2UKVP01ltv6b333tOmTZtUrlw5de7c2e56sd69e2vnzp1KTEzUwoULtXbtWg0cONC2Pj09XfHx8YqKitKWLVs0depUjRs3TtOnTy9Wre7m6IyExZm5EAAAAIDrOHwa4auvvqqbb75ZwcHB+daFhISoU6dOmjp1qj799FOH37xr167q2rVrgesMw9Abb7yhZ599Vrfffrsk6ZNPPlGVKlU0f/583Xfffdq9e7eWLFmi77//XjfccIMk6e2331a3bt30yiuvKDIyUrNmzVJWVpY++ugjWa1W1atXT8nJyXrttdfsQpnZtYgJU2igr9IyLn+aYGigr1rEhJVgVQAAAAAux+GwtWnTJo0ePfqy67t3764PP/zQKUVJUkpKilJTU9WxY0fbspCQELVs2VJJSUm67777lJSUpNDQUFvQkqSOHTvKy8tLmzZt0p133qmkpCS1bdtWVqvVNqZz5856+eWXdeLECVWoUCHfe2dmZiozM9P2PO9oXnZ2trKz3XNNVE6uoYysnELHZGTlKDs7W7lelhKqCpJs3wl3fTdgj36YDz0xF/phLvTDfOiJuZixH8WpxeGwdfjwYZUvX/6y64OCgnTkyBGH37goqampkpTvnl5VqlSxrUtNTVV4eLjdeh8fH4WFhdmNiYmJybeNvHUFha1JkyZp/Pjx+ZYvW7ZMgYGBV7hHV2f3CYuyzhd+s62s87l647Mlur6CUUJV4WKJiYnuLgEXoR/mQ0/MhX6YC/0wH3piLmbqR3HuLexw2KpcubL27NmTL7jk+fnnn1WpUiWH39jMxowZoxEjRtiep6enq3r16oqPjy/wNMqSsGLuNklHixz3hzVST3Rr5PqCYJOdna3ExER16tRJvr6+7i6nzKMf5kNPzIV+mAv9MB96Yi5m7EdBc1hcjsNhq2PHjnrxxRfVpUuXfOsMw9CLL75od8rf1YqIiJAkHT16VFWrVrUtP3r0qBo3bmwbc+zYMbvXnT9/XsePH7e9PiIiQkeP2oeUvOd5Yy7l5+cnP7/8s/r5+vq6rcl/nMxyeJxZvohljTu/H8iPfpgPPTEX+mEu9MN86Im5mKkfxanD4dkIn332Wf30009q2bKlvvjiC23btk3btm3TnDlz1LJlS+3YsUPPPPPMFRVckJiYGEVERGjFihW2Zenp6dq0aZPi4uIkSXFxcUpLS9OWLVtsY1auXKnc3Fy1bNnSNmbt2rV251YmJiaqTp06BZ5CaFZVg61FDyrGOAAAAACu5XDYqlWrlpYvX64zZ87ovvvuU9OmTdW0aVP17NlTGRkZSkxMVO3atYv15qdPn1ZycrKSk5MlXZgUIzk5WYcOHZLFYtGwYcP0wgsv6D//+Y9++ukn9enTR5GRkbrjjjskSddff726dOmiAQMGaPPmzVq/fr2GDBmi++67T5GRkZKkXr16yWq1qn///tq5c6fmzJmjN9980+40QU9w+pxjF+I5Og4AAACAazl8GqEk3XDDDdqxY4eSk5O1d+9eGYah6667znZaX3H98MMP6tChg+15XgDq27evZs6cqaeeekpnzpzRwIEDlZaWpptuuklLliyRv///7iU1a9YsDRkyRLfccou8vLzUo0cPvfXWW7b1ISEhWrZsmQYPHqxmzZqpUqVKGjt2rEdN+y5JO1NPFz2oGOMAAAAAuFaxwlaexo0bX3HAulj79u1lGJefOc9isWjChAmaMGHCZceEhYVp9uzZhb5Pw4YNtW7duiuu0wyyz+c6dRwAAAAA13L4NEK4V0SIf9GDJAX6XVF+BgAAAOBkhC0PUbNyOYfG/X0mSzm53GcLAAAAcDfClodIyzjv0Lhz2bnanHLcxdUAAAAAKAphy0ME+nk7PPbQ30ySAQAAALjbFV3gk5aWps2bN+vYsWPKzbWfkKFPnz5OKQz2WkRXVOKuY0UPlPT55kO6t0WUiysCAAAAUJhih60FCxaod+/eOn36tIKDg2WxWGzrLBYLYctF+t4YrRcX73Zo7O9p51xcDQAAAICiFPs0wieeeEIPPfSQTp8+rbS0NJ04ccL2OH6ca4VcxerjpSCrY+2yenN2KAAAAOBuxf6t/PDhwxo6dKgCAwNdUQ8KcWujag6Na3NdZRdXAgAAAKAoxQ5bnTt31g8//OCKWlCEFtFhTh0HAAAAwHWKfc1WQkKCRo4cqV27dqlBgwby9fW1W3/bbbc5rTjYqxzk59RxAAAAAFyn2GFrwIABkqQJEybkW2exWJSTk3P1VaFAu1LTHR7Xpg6nEgIAAADuVOzTCHNzcy/7IGi51g8HHZuAxNFxAAAAAFznqqatO3eOKcZL0snTZx0at37fXy6uBAAAAEBRih22cnJyNHHiRFWrVk1BQUE6cOCAJOm5557Tv/71L6cXiP/Z82eGQ+MysnN1+tx5F1cDAAAAoDDFDlsvvviiZs6cqSlTpshqtdqW169fXx9++KFTi4O9jOxch8c+/tkWF1YCAAAAoCjFDluffPKJpk+frt69e8vb29u2vFGjRvr555+dWhzsBVq9ix70X9sPOzaZBgAAAADXuKKbGteuXTvf8tzcXGVnZzulKBTs4dY1HR+cw2mEAAAAgDsVO2zFxsZq3bp1+ZZ/+eWXatKkiVOKQsEeaV/L4bFncwwXVgIAAACgKMW+z9bYsWPVt29fHT58WLm5uZo3b5727NmjTz75RAsXLnRFjfgvq4/j2fhsNmELAAAAcKdiH9m6/fbbtWDBAi1fvlzlypXT2LFjtXv3bi1YsECdOnVyRY24iK/FwYFkLQAAAMCtin1k6/fff1ebNm2UmJiYb93GjRvVqlUrpxSGglUJ8dPvaZlFjsuVlJNryNvL0XQGAAAAwJmKfWQrPj5ex48fz7d8/fr16tKli1OKwuX5eDs2I6EhacNebm4MAAAAuEuxw1arVq0UHx+vU6dO2ZatXbtW3bp10/PPP+/U4pBftdAAh8fO3XLIhZUAAAAAKEyxw9aHH36oGjVqqHv37srMzNSqVauUkJCgCRMmaPjw4a6oERcZ2Nbx6d9/+v2ECysBAAAAUJhihy0vLy99/vnn8vX11c0336zbbrtNkyZN0uOPP+6K+nCJm66t7PDYwyeKvrYLAAAAgGs4NEHG9u3b8y0bN26cevbsqfvvv19t27a1jWnYsKFzK4Sd4kx4kcWMhAAAAIDbOBS2GjduLIvFIsP432/vec/ff/99TZ8+XYZhyGKxKCcnx2XFAgAAAICncChspaSkuLoOFEOAj0Vnzzt22Orw8bOqFub4pBoAAAAAnMOhsBUVFeXqOlAMwQG+Onsqy6GxnV5bqV0vJLi4IgAAAACXKvZNjSVp//79euONN7R7925JUmxsrB5//HHVqlXLqcWhYDUrl9NRB8NWxnkXFwMAAACgQMWejXDp0qWKjY3V5s2b1bBhQzVs2FCbNm1SvXr1lJiY6IoacYmHW8cUa3xOLjNlAAAAACWt2Ee2Ro8ereHDh2vy5Mn5lo8aNUqdOnVyWnEoWOvaFSUZkhybmXDt7mPqUK+KS2sCAAAAYK/YR7Z2796t/v3751v+0EMPadeuXU4pCoXz9rKonLfjR6umJv7swmoAAAAAFKTYYaty5cpKTk7Otzw5OVnh4eHOqAkO6BDpeNg69PcZF1YCAAAAoCAOn0Y4YcIEPfnkkxowYIAGDhyoAwcO6MYbb5QkrV+/Xi+//LJGjBjhskJhr0OkoYW/OTY2O4drtgAAAICS5nDYGj9+vB599FE999xzKl++vF599VWNGTNGkhQZGalx48Zp6NChLisU9nyKcUzSsSu7AAAAADiTw2HLMC4cHbFYLBo+fLiGDx+uU6dOSZLKly/vmupQKB8v6Xxu0ePOOTAGAAAAgHMVazZCi8X+GAkhy718LJKjt9E6fe68gvyv6LZqAAAAAK5AsX77vu666/IFrksdP378qgqC40ICrDp32rGbGw/5dLNmPnyjiysCAAAAkKdYYWv8+PEKCQlxVS0optjIYB395S+Hxq7ed8LF1QAAAAC4WLHC1n333cf07ibSMiZMqxwMW5KUk2vI24vpMgAAAICS4PCcdkWdPoiS90CrGsUav3zbERdVAgAAAOBSDoetvNkIYR5WH69iTes+cv42l9UCAAAAwJ7DYSs3N5dTCE3oribVHB6bnskc8AAAAEBJKcatcd0jOjpaFosl32Pw4MGSpPbt2+db9+ijj9pt49ChQ0pISFBgYKDCw8M1cuRInT/v6KTp5vbCnQ3cXQIAAACAApj+xkvff/+9cnJybM937NihTp066R//+Idt2YABAzRhwgTb88DAQNufc3JylJCQoIiICG3YsEFHjhxRnz595Ovrq5deeqlkdsKFAqzexRp/MiNbIYG+LqoGAAAAQB7TH9mqXLmyIiIibI+FCxeqVq1aateunW1MYGCg3Zjg4GDbumXLlmnXrl369NNP1bhxY3Xt2lUTJ07UtGnTlJXl2D2qzM7P2/Ert+6f/p0LKwEAAACQx/RHti6WlZWlTz/9VCNGjLCbHXHWrFn69NNPFRERoe7du+u5556zHd1KSkpSgwYNVKVKFdv4zp07a9CgQdq5c6eaNGmS730yMzOVmZlpe56eni5Jys7OVnZ2tqt2z2F5NeT9t25EeW07nO7Qa39KzTDFPpQml/YD7kU/zIeemAv9MBf6YT70xFzM2I/i1GIxPGiawS+++EK9evXSoUOHFBkZKUmaPn26oqKiFBkZqe3bt2vUqFFq0aKF5s2bJ0kaOHCgfv31Vy1dutS2nYyMDJUrV06LFy9W165d873PuHHjNH78+HzLZ8+ebXeKollkZEtjfvCWHJqb0NCkG3LEmYQAAABA8WVkZKhXr146efKk3Rl1BfGosNW5c2dZrVYtWLDgsmNWrlypW265Rfv27VOtWrWuKGwVdGSrevXq+uuvv4r8QEtCdna2EhMT1alTJ/n6XkhN1z63zOHXVw/20cqRN7uqvDKnoH7AfeiH+dATc6Ef5kI/zIeemIsZ+5Genq5KlSo5FLY85jTCX3/9VcuXL7cdsbqcli1bSpItbEVERGjz5s12Y44ePSpJioiIKHAbfn5+8vPzy7fc19fXNE2W7OsJ9PVSRrZjU7v/ln5eXt4+8vbiRtXOZLbvR1lHP8yHnpgL/TAX+mE+9MRczNSP4tRh+gky8syYMUPh4eFKSEgodFxycrIkqWrVqpKkuLg4/fTTTzp27JhtTGJiooKDgxUbG+uyekvaI+1qFWv88m1HXFQJAAAAAMlDwlZubq5mzJihvn37ysfnfwfj9u/fr4kTJ2rLli06ePCg/vOf/6hPnz5q27atGjZsKEmKj49XbGysHnjgAW3btk1Lly7Vs88+q8GDBxd49MpTDWpfu3jj5/zookoAAAAASB4StpYvX65Dhw7poYcesltutVq1fPlyxcfHq27dunriiSfUo0cPu2u6vL29tXDhQnl7eysuLk7333+/+vTpY3dfrtLA6uNVrCngcyWdzcopchwAAACAK+MR12zFx8eroHk8qlevrjVr1hT5+qioKC1evNgVpZnKmpE3q9XkFQ6Pf2HRTr14Z0MXVgQAAACUXR5xZAuOiQj1L9b4zfuOuqgSAAAAAIStUqZWJcfvA7b37ywXVgIAAACUbYStUmbuo62LNf7P9MyiBwEAAAAoNsJWKRMWZC3W+G6vO36NFwAAAADHEbZKobBAx2+09ufZ/BOPAAAAALh6hK1SaPHQtsUafzIj20WVAAAAAGUXYasUKu6shL3fX+eiSgAAAICyi7BVStUsxqyEO46edWElAAAAQNlE2CqlvizmrIRns3JcVAkAAABQNhG2SqnizkrY96MNLqoEAAAAKJsIW6VYOT9vh8duPpiunFxmJgQAAACchbBViiU0qFqs8St/SnVRJQAAAEDZQ9gqxcbfVr9Y4x/5bKuLKgEAAADKHsJWKRZg9S5Wg3PFRBkAAACAsxC2Srl1T91crPFPz+PoFgAAAOAMhK1SrlpYQLHGf518zEWVAAAAAGULYasMeKVHo2KNP/RXhosqAQAAAMoOwlYZcGezasUa3/aVVS6qBAAAACg7CFtlgLeXRf7elmK95rpnFruoGgAAAKBsIGyVESue6FCs8Vk5hsZ+s8NF1QAAAAClH2GrjCjuRBmS9EnSr8o6n+uCagAAAIDSj7BVhrx9X5Niv+a6Z791QSUAAABA6UfYKkO6Nax6Ra9LOXbGyZUAAAAApR9hqwzx9rLovfubFvt1HV5b7fxiAAAAgFKOsFXGdKlfVc92q13s10WPXuSCagAAAIDSi7BVBj3cts4VvY7ABQAAADiOsFVG7X+p2xW9bsZ3KU6uBAAAACidCFtllLeXRXExFYr9uvELdykn13BBRQAAAEDpQtgqwz56sOUVva7W04udXAkAAABQ+hC2yrAAq7faX1v8o1sS128BAAAARSFslXEz+994xa8lcAEAAACXR9iCDk5OuOLXErgAAACAghG2IInABQAAADgbYQs2BC4AAADAeQhbsLN7Qpcrfm306EXKOp/rxGoAAAAAz0XYgp0Aq7fa1Q694tdf9+y3emZ+stPqAQAAADwVYQv5fPxw66t6/ayNhzmtEAAAAGUeYQsFuprrt/IQuAAAAFCWEbZwWQQuAAAA4MoRtlAoZwUuJs4AAABAWUPYQpEOTk5QsNVyVdu47tlvNWnxLidVBAAAAJgfYQsO2T6hmyqWs17VNt5fm0LgAgAAQJlB2ILDtjzXSQ2qBV/VNt5fm8IphQAAACgTCFsolgWPtdGOcZ2vahvXPfutUtPOOakiAAAAwJwIWyi2IH+fq544o9XkFcxUCAAAgFLN1GFr3Lhxslgsdo+6deva1p87d06DBw9WxYoVFRQUpB49eujo0aN22zh06JASEhIUGBio8PBwjRw5UufPny/pXSmVmBoeAAAAuDxThy1Jqlevno4cOWJ7fPfdd7Z1w4cP14IFCzR37lytWbNGf/zxh+666y7b+pycHCUkJCgrK0sbNmzQxx9/rJkzZ2rs2LHu2JVS6eDkBF3dPIUELgAAAJROpg9bPj4+ioiIsD0qVaokSTp58qT+9a9/6bXXXtPNN9+sZs2aacaMGdqwYYM2btwoSVq2bJl27dqlTz/9VI0bN1bXrl01ceJETZs2TVlZWe7crVIlZXKCerWoflXbiB69SDm5hpMqAgAAANzPx90FFGXv3r2KjIyUv7+/4uLiNGnSJNWoUUNbtmxRdna2OnbsaBtbt25d1ahRQ0lJSWrVqpWSkpLUoEEDValSxTamc+fOGjRokHbu3KkmTZoU+J6ZmZnKzMy0PU9PT5ckZWdnKzs720V76ri8GsxQS57x3a/XiFtq64ZJq654G7WeXqw37m6ghEZVnViZ65mxH2UZ/TAfemIu9MNc6If50BNzMWM/ilOLqcNWy5YtNXPmTNWpU0dHjhzR+PHj1aZNG+3YsUOpqamyWq0KDQ21e02VKlWUmpoqSUpNTbULWnnr89ZdzqRJkzR+/Ph8y5ctW6bAwMCr3CvnSUxMdHcJ+VwbYNHes17SFZ5cOOzL7fpwebIGXO95R7nM2I+yjH6YDz0xF/phLvTDfOiJuZipHxkZGQ6PNXXY6tq1q+3PDRs2VMuWLRUVFaUvvvhCAQEBLnvfMWPGaMSIEbbn6enpql69uuLj4xUcfHX3mXKG7OxsJSYmqlOnTvL19XV3OXa6dZOufW7ZVWzBoh1p3tqcW03jbq3ntLpcycz9KIvoh/nQE3OhH+ZCP8yHnpiLGfuRd9abI0wdti4VGhqq6667Tvv27VOnTp2UlZWltLQ0u6NbR48eVUREhCQpIiJCmzdvtttG3myFeWMK4ufnJz8/v3zLfX19TdNkyXz15Dk4OUE1xyzS1VyCNWvTYX2//y8te7Jj0YNNwqz9KKvoh/nQE3OhH+ZCP8yHnpiLmfpRnDpMP0HGxU6fPq39+/eratWqatasmXx9fbVixQrb+j179ujQoUOKi4uTJMXFxemnn37SsWPHbGMSExMVHBys2NjYEq+/LDkwKUGxVa/uKOAvf2UycQYAAAA8lqnD1pNPPqk1a9bo4MGD2rBhg+688055e3urZ8+eCgkJUf/+/TVixAitWrVKW7Zs0YMPPqi4uDi1atVKkhQfH6/Y2Fg98MAD2rZtm5YuXapnn31WgwcPLvDIFZxr8eNttGNc56veTq2nF+vzjSlOqAgAAAAoOaYOW7///rt69uypOnXq6J577lHFihW1ceNGVa5cWZL0+uuv69Zbb1WPHj3Utm1bRUREaN68ebbXe3t7a+HChfL29lZcXJzuv/9+9enTRxMmTHDXLpU5Qf4+Trn58ej5u7gfFwAAADyKqa/Z+vzzzwtd7+/vr2nTpmnatGmXHRMVFaXFixc7uzQU08HJCar77Lc6dz73qrYTPXqRU8IbAAAA4GqmPrKF0uXnF7qqT1zUVW8nevQiHT5+1gkVAQAAAK5D2EKJmnB7ff3yQteiBxah9ZSVnFYIAAAAUyNsocRZfbycdioggQsAAABmRdiC2zgzcGVd5bVgAAAAgLMRtuBWzgpc1z37rYZ8+p1TtgUAAAA4A2ELbueswLVwx0lFj16k46eznLI9AAAA4GoQtmAKBycnaOnQtk7ZVtMXEhXDtVwAAABwM8IWTKNOZHmnHeUyxBTxAAAAcC/CFkzHmTctZop4AAAAuAthC6Z0cHKCfL0sTtte9OhFOpuV47TtAQAAAEUhbMG09r7UTeufutlp27t+7BL9461Ep20PAAAAKAxhC6ZWLSxABycnyN/HOV/V7//IUvToRfozPdMp2wMAAAAuh7AFj/DzC1318l0Nnba95i8t51ouAAAAuBRhCx7j3hbVtf+lbk7dJjMWAgAAwFUIW/Ao3l4WHZycoNsaVHXaNvNmLGQCDQAAADgTYQse6a3eTfXLC12dus3rxy7R/e+vdeo2AQAAUHYRtuCxrD5eOjg5QYuHtHHaNr9LOaXo0YuUmnbOadsEAABA2UTYgseLvSbYqTdClqRWk1coevQinT533qnbBQAAQNlB2EKpcXBygoKs3k7dZv1xS5lEAwAAAFeEsIVSZceELvr+6Y5O327eJBo5uYbTtw0AAIDSibCFUqdysJ8OTk5Q86gKTt92racX66N1vzh9uwAAACh9CFsoteYOulG7J3Rx+nYnLNrLDZEBAABQJMIWSrUAq7cOTk5QXExFp287evQifbjqAKcWAgAAoECELZQJnz3SyiVHuV5Yult1n0/UpqMWp28bAAAAno2whTIj7yjXqhHtnb7t2Qe81OS5ZU7fLgAAADwXYQtlTkx4OR2cnCDnHouy6LTEtVwAAACwIWyhzEpx0VGu6NGLtOXACadvFwAAAJ6FsIUyLe8o1/Jh7Zy63R7TNyh69CLtSz3t1O0CAADAcxC2AEm1I4J0cHKC5j/a2qnb7fjGGkIXAABAGUXYAi7SODpUBycnaO2THZy63bzQdTYrx6nbBQAAgHkRtoAC1KgUqIOTE+Tl5Bndrx+7RM3GEboAAADKAsIWUIgDkxLU7trKTt3m3+cuhK7+Mzc5dbsAAAAwF8IWUISP+7fQ7gld1Kl2oFO3u+Lnv9TwaaaKBwAAKK0IW4ADAqze+uDhDjo4OcGp203PvTBV/OHjZ526XQAAALgfYQsopoOTE3RHo2pO3WbrKSsVPXqRUo6dcep2AQAA4D6ELeAKvNGzsX55oavTt9vhtdXMWggAAFBKELaAK2T18dLByQlqUi1YkuHUbV8/donufWeFU7cJAACAkkXYAq7SF4+20tQWOfJx8jTxm34/p+jRTKABAADgqQhbgBNYvaXdE+L1/dMdnb7t6NGLtPGXv52+XQAAALgWYQtwosrBfjo4OUEbR9/i1O3e99FGRY9epH2pp526XQAAALgOYQtwgYhQfx2cnKCvBt7o1O12fGONokcv0oaf/3LqdgEAAOB8hC3AhZrVrOD0e3NJUq+ZmxQ9epGSD6Y5fdsAAABwDsIWUAIOTk7QDTVCnb7dO95bz+mFAAAAJkXYAkrIl//XWrsndHHJtvNOLzz0V4ZLtg8AAIDiI2wBJSjA6q2DkxO0akR7l2y/7SurFD16kTbvO+6S7QMAAMBxpg5bkyZNUvPmzVW+fHmFh4frjjvu0J49e+zGtG/fXhaLxe7x6KOP2o05dOiQEhISFBgYqPDwcI0cOVLnz58vyV0B7MSEl9PByQla/9TNLtn+PR8mKXr0Im05cMIl2wcAAEDRfNxdQGHWrFmjwYMHq3nz5jp//ryefvppxcfHa9euXSpXrpxt3IABAzRhwgTb88DAQNufc3JylJCQoIiICG3YsEFHjhxRnz595Ovrq5deeqlE9we4VLWwAB2cnKDG45cp7Wy207ffY/oGSZK3RVr6eDvVjghy+nsAAACgYKYOW0uWLLF7PnPmTIWHh2vLli1q27atbXlgYKAiIiIK3MayZcu0a9cuLV++XFWqVFHjxo01ceJEjRo1SuPGjZPVanXpPgCOSH4+XsdPZ6npC4ku2X6OceG6LklaNaK9YsLLFfEKAAAAXC1Th61LnTx5UpIUFhZmt3zWrFn69NNPFRERoe7du+u5556zHd1KSkpSgwYNVKVKFdv4zp07a9CgQdq5c6eaNGmS730yMzOVmZlpe56eni5Jys7OVna2848+FFdeDWaoBc7rR3k/i/ZOjNdby/bq7XUpziitQB1eWy1JurZSoD4b0FIhgb4uey934O+H+dATc6Ef5kI/zIeemIsZ+1GcWiyGYRgurMVpcnNzddtttyktLU3fffedbfn06dMVFRWlyMhIbd++XaNGjVKLFi00b948SdLAgQP166+/aunSpbbXZGRkqFy5clq8eLG6du2a773GjRun8ePH51s+e/Zsu1MUAVfJNaQnNlqUKy9JFhe+kyHJUOtKhu6qZcjH1FdxAgAAuF9GRoZ69eqlkydPKjg4uNCxHhO2Bg0apG+//VbfffedrrnmmsuOW7lypW655Rbt27dPtWrVuqKwVdCRrerVq+uvv/4q8gMtCdnZ2UpMTFSnTp3k61u6jkp4Ilf2IzXtnNq8utap2yyKl6T/DIpTncjyJfq+zsLfD/OhJ+ZCP8yFfpgPPTEXM/YjPT1dlSpVcihsecRphEOGDNHChQu1du3aQoOWJLVs2VKSbGErIiJCmzdvthtz9OhRSbrsdV5+fn7y8/PLt9zX19c0TZbMV09Z54p+VK/sq4OTEyRJN09dpQN/u/4+WrmSbn03yfa8Y51wvd27qQKs3i5/b2fi74f50BNzoR/mQj/Mh56Yi5n6UZw6TB22DMPQY489pq+//lqrV69WTExMka9JTk6WJFWtWlWSFBcXpxdffFHHjh1TeHi4JCkxMVHBwcGKjY11We2As60c2UGnz51Xg3FLVZKHo5fvOabrx9pPVjP/0dZqHB1aglUAAAB4HlOHrcGDB2v27Nn65ptvVL58eaWmpkqSQkJCFBAQoP3792v27Nnq1q2bKlasqO3bt2v48OFq27atGjZsKEmKj49XbGysHnjgAU2ZMkWpqal69tlnNXjw4AKPXgFmFuTvo5TJCUpNO6dWk1e4rY473ltv+zPBCwAAoGCmDlvvvvuupAs3Lr7YjBkz1K9fP1mtVi1fvlxvvPGGzpw5o+rVq6tHjx569tlnbWO9vb21cOFCDRo0SHFxcSpXrpz69u1rd18uwNNEhPrr4OQEHT5+Vq2nrHRrLRcHrzyBvl5KHN5e1cICSr4gAAAAkzB12Cpq7o7q1atrzZo1RW4nKipKixcvdlZZgGnk3RQ563yu2r2yQkfSstxdkiQpIzs3Xwh8tvP1erBdjLy9XDm7IgAAgHmYOmwBcIzVx0tJozvpbFaOhn6yVon7XD+RRnG9sHS3Xli6u8B1BDEAAFAaEbaAUiTA6q0PHu4gSW6/rqs4LhfEZvdrqRvrVnJDRQAAAFePsAWUUma6rutK9Zq5yeGxXzwcpxa1w1xYDQAAQPEQtoBSLu+6Lkn66dBJdf/nd26uyDXu+TDpomdeejxpWYHjrq1cTl8Oaq2QQHPcqwMAAJRehC2gDGlQI8QWvDbvO35JQClNvC67Zu+fZ9RoQsFBrCifP9RKra6reKVFAQCAMoawBZRRLWqH2YLXn+mZavPScp1zc01md99HG4v9Gu5DBgBA2UXYAqDKwX76+b/BS5K2HDihHtM3uLGi0qOg+5A5wtdLWjasvWLCyzm5IgAAUFIIWwDyaVazgu2olySdPndeD0xL1I9/5rqxqrIlO1fq8Npqh8Y2rR6qT/q3VJA/P9IBADAT/mUGUKQgfx99/URXSTL1vbzKqq2/pan+uKUOj/9q4I1qVrOCCysCAAASYQtAMV18L6+LpRw74/CRGLhXUaeIEsYAAHAOwhYAp4gJL2d36qEkbfzl7yuaVALuVZzr9QhmAABcHmELgMu0uq5ivgCWhyBWOjgSzOb2b1EClQAAYD6ELQBucbkgtuHnv9Rr5iY3VARX+ce/NquwG03n4SgZAKC0IWwBMJUb61a67NGwi2Wdz9UzC37Q3E1/FrA2V4Xd2BjuUHQ/HDlK5m2Rlj7eTrUjgpxRFAAALkXYAuCRrD5emnpnC0290355dna2Fi9erG7dusjX11eS9NOhk+r+z+/cUCWcLceQOr6xptiv61gnXG/3bqoAq7cLqgIAoGCELQClXoMaIQ4dLbtUTq6hT9b9ovHf7nNBVShJy/cc0/Vjlzg8fv6jrdU4OtR1BQEAygTCFgBchreXRQ+2q6MH29Vx+DXcALp0uOO99Vf0Oj9vixKHt1eNSoHOLQgA4JEIWwDgRBffALq4Dh8/q9ZTVjq5IpSkzBxDbV9Z5fD4ptVD9Un/lgry559jACiN+OkOACZRLSzA4dMduQ6tdNj6W5rqj1vqlG0xeQgAmA9hCwA8UHGuQzublaOhn6xV4r4MF1cFdyre5CH5p+K3SFo0pI1irwl2em0AUFYRtgCglAuweuuDhztcdj1hrCzKPxW/IanbO+uuesvB/t5aNqy9IkL9r3pbAODpCFsAUMYVFcYuRjBDUdLP5ajV5BVX/HrCGoDShLAFAHCYI8Gs4BkZudE0HHO1Ya0o9zevobG315PVh+8jANcjbAEAnOrSGRkLutG0xFEyuMen3x/Sp98fuurtfPFwnFrUDnNCRQBKM8IWAMAtHD19MTXtnEuPdABX4p4Pk5y4tfwTlkhStRB/LXisjcKCrE58LwAlibAFADC1iFB/h2devNiWAyfUY/oGF1QEOFvBpzQePnlOTV9IdMo7dKwTrrd7N1WA1dsp2wPgGMIWAKBUalazgsMh7fS58+rzz+XaeizHxVUB7rF8zzFdP3ZJib4nAQ8gbAEAoCB/H80b0eWKXnv4+Fm1nrLSyRUBns8VAc9L0rdD26pOZHmnbhdwFcIWAABXoVpYQLFOc0w+mKY73lvvwoqA0itXUue31pbAO/3vOrpAXy8lDm+vamEBJfC+KG0IWwAAlKDG0aFXdA1aQa588hCm4gcK97+/HxnZuS45er3g/25SgxohTt8uzIWwBQCAh7qSyUMunor/VKahji8l6nhu0a8D4Fzd//mdy9+D+8q5H2ELAIAyKizIqq0vXf1Rtn2pp9XxjTVOqAiAMznjvnLzH22txtGhzimoDCJsAQCAq1I7IuiqTo0krAHm5YxrTCuV89W3j7dT5WA/J1TkWQhbAADAra42rBVl877jTr4JMYDi+OtMtpq/tLzIcaXxdgGELQAAUKq1qB121WEu63yunlnwg+Zu+tNJVV2MCUsAqbDbBXjpnb3f6cv/u0khgb4lXtfVIGwBAAAUwerjpal3ttDUO5273YsnLPH19dWu39PV7Z11zn0TwON5ae9fGWo04cJ0/Fuf7aSwIKuba3IMYQsAAMAkYq8JdtoplVsOnFCP6Rucsi3ATJq+kKjKQVZ9/2wnd5dSJMIWAABAKdSsZgWXXgtXEAIeSsqfp7PU/IVE0wcuwhYAAACcwhUB78/0TLV5abnOOXWrRTEkWUr0HVF8f57O0vHTWaY+pZCwBQAAANOqHOynn0vwCF12drZmzl2sF7fza7InuPPtVVozprO7y7gsvkUAAADARcLLSXsnxsvX13kz353MyNbtry7TwTNO2yQk/XryvLtLKBRhCwAAAHCxkEBfrX7O9UfouK+cuRC2AAAAgFLiau8rd/rceT0wLVE//pnrxKpcJzTA3HHG3NUBAAAAKDFB/j76+omuV72dPX+cUue31jqhosJNvquhy9/japSpsDVt2jRNnTpVqampatSokd5++221aNHC3WUBAAAApUqdyPIOHWG7mtsFWCR1qhdxRa8tKWUmbM2ZM0cjRozQe++9p5YtW+qNN95Q586dtWfPHoWHh7u7PAAAAKDMKex2Ae+v2q9JS3/W5abif/f+pvL2MvcU/V7uLqCkvPbaaxowYIAefPBBxcbG6r333lNgYKA++ugjd5cGAAAA4BKPdKild+5rpOBLJoWsEuyn9+5vqi71q7qnsGIoE0e2srKytGXLFo0ZM8a2zMvLSx07dlRSUv7ZWjIzM5WZmWl7np6eLunCfReys7NdX3AR8mowQy2gH2ZDP8yHnpgL/TAX+mE+9MRcbr4uTOOb5ajCdTfo+NkchZf30w1RFeTtZXFbj4rzvhbDMAwX1mIKf/zxh6pVq6YNGzYoLi7Otvypp57SmjVrtGnTJrvx48aN0/jx4/NtZ/bs2QoMDHR5vQAAAADMKSMjQ7169dLJkycVHBxc6NgycWSruMaMGaMRI0bYnqenp6t69eqKj48v8gMtCdnZ2UpMTFSnTp2cerM9XBn6YS70w3zoibnQD3OhH+ZDT8zFjP3IO+vNEWUibFWqVEne3t46evSo3fKjR48qIiL/DCZ+fn7y8/PLt9zX19c0TZbMV09ZRz/MhX6YDz0xF/phLvTDfOiJuZipH8Wpo0xMkGG1WtWsWTOtWLHCtiw3N1crVqywO60QAAAAAJylTBzZkqQRI0aob9++uuGGG9SiRQu98cYbOnPmjB588EF3lwYAAACgFCozYevee+/Vn3/+qbFjxyo1NVWNGzfWkiVLVKVKFXeXBgAAAKAUKjNhS5KGDBmiIUOGuLsMAAAAAGVAmbhmCwAAAABKGmELAAAAAFyAsAUAAAAALkDYAgAAAAAXIGwBAAAAgAsQtgAAAADABQhbAAAAAOACZeo+W1fKMAxJUnp6upsruSA7O1sZGRlKT0+Xr6+vu8sp8+iHudAP86En5kI/zIV+mA89MRcz9iMvE+RlhMIQthxw6tQpSVL16tXdXAkAAAAAMzh16pRCQkIKHWMxHIlkZVxubq7++OMPlS9fXhaLxd3lKD09XdWrV9dvv/2m4OBgd5dT5tEPc6Ef5kNPzIV+mAv9MB96Yi5m7IdhGDp16pQiIyPl5VX4VVkc2XKAl5eXrrnmGneXkU9wcLBpvnSgH2ZDP8yHnpgL/TAX+mE+9MRczNaPoo5o5WGCDAAAAABwAcIWAAAAALgAYcsD+fn56fnnn5efn5+7S4Hoh9nQD/OhJ+ZCP8yFfpgPPTEXT+8HE2QAAAAAgAtwZAsAAAAAXICwBQAAAAAuQNgCAAAAABcgbAEAAACACxC2PMy0adMUHR0tf39/tWzZUps3b3Z3SR5v0qRJat68ucqXL6/w8HDdcccd2rNnj92Yc+fOafDgwapYsaKCgoLUo0cPHT161G7MoUOHlJCQoMDAQIWHh2vkyJE6f/683ZjVq1eradOm8vPzU+3atTVz5kxX716pMHnyZFksFg0bNsy2jJ6UrMOHD+v+++9XxYoVFRAQoAYNGuiHH36wrTcMQ2PHjlXVqlUVEBCgjh07au/evXbbOH78uHr37q3g4GCFhoaqf//+On36tN2Y7du3q02bNvL391f16tU1ZcqUEtk/T5KTk6PnnntOMTExCggIUK1atTRx4kRdPN8V/XCttWvXqnv37oqMjJTFYtH8+fPt1pfk5z937lzVrVtX/v7+atCggRYvXuz0/TW7wvqRnZ2tUaNGqUGDBipXrpwiIyPVp08f/fHHH3bboB/OVdTfkYs9+uijslgseuONN+yWl5qeGPAYn3/+uWG1Wo2PPvrI2LlzpzFgwAAjNDTUOHr0qLtL82idO3c2ZsyYYezYscNITk42unXrZtSoUcM4ffq0bcyjjz5qVK9e3VixYoXxww8/GK1atTJuvPFG2/rz588b9evXNzp27Gj8+OOPxuLFi41KlSoZY8aMsY05cOCAERgYaIwYMcLYtWuX8fbbbxve3t7GkiVLSnR/Pc3mzZuN6Ohoo2HDhsbjjz9uW05PSs7x48eNqKgoo1+/fsamTZuMAwcOGEuXLjX27dtnGzN58mQjJCTEmD9/vrFt2zbjtttuM2JiYoyzZ8/axnTp0sVo1KiRsXHjRmPdunVG7dq1jZ49e9rWnzx50qhSpYrRu3dvY8eOHcZnn31mBAQEGO+//36J7q/Zvfjii0bFihWNhQsXGikpKcbcuXONoKAg480337SNoR+utXjxYuOZZ54x5s2bZ0gyvv76a7v1JfX5r1+/3vD29jamTJli7Nq1y3j22WcNX19f46effnL5Z2AmhfUjLS3N6NixozFnzhzj559/NpKSkowWLVoYzZo1s9sG/XCuov6O5Jk3b57RqFEjIzIy0nj99dft1pWWnhC2PEiLFi2MwYMH257n5OQYkZGRxqRJk9xYVelz7NgxQ5KxZs0awzAu/KD29fU15s6daxuze/duQ5KRlJRkGMaFHypeXl5Gamqqbcy7775rBAcHG5mZmYZhGMZTTz1l1KtXz+697r33XqNz586u3iWPderUKePaa681EhMTjXbt2tnCFj0pWaNGjTJuuummy67Pzc01IiIijKlTp9qWpaWlGX5+fsZnn31mGIZh7Nq1y5BkfP/997Yx3377rWGxWIzDhw8bhmEY//znP40KFSrY+pP33nXq1HH2Lnm0hIQE46GHHrJbdtdddxm9e/c2DIN+lLRLf5Esyc//nnvuMRISEuzqadmypfHII484dR89SWG/2OfZvHmzIcn49ddfDcOgH652uZ78/vvvRrVq1YwdO3YYUVFRdmGrNPWE0wg9RFZWlrZs2aKOHTvalnl5ealjx45KSkpyY2Wlz8mTJyVJYWFhkqQtW7YoOzvb7rOvW7euatSoYfvsk5KS1KBBA1WpUsU2pnPnzkpPT9fOnTttYy7eRt4Y+nd5gwcPVkJCQr7PjZ6UrP/85z+64YYb9I9//EPh4eFq0qSJPvjgA9v6lJQUpaam2n2WISEhatmypV0/QkNDdcMNN9jGdOzYUV5eXtq0aZNtTNu2bWW1Wm1jOnfurD179ujEiROu3k2PceONN2rFihX65ZdfJEnbtm3Td999p65du0qiH+5Wkp8/P8OuzMmTJ2WxWBQaGiqJfrhDbm6uHnjgAY0cOVL16tXLt7409YSw5SH++usv5eTk2P3iKElVqlRRamqqm6oqfXJzczVs2DC1bt1a9evXlySlpqbKarXafijnufizT01NLbA3eesKG5Oenq6zZ8+6Ync82ueff66tW7dq0qRJ+dbRk5J14MABvfvuu7r22mu1dOlSDRo0SEOHDtXHH38s6X+fZ2E/n1JTUxUeHm633sfHR2FhYcXqGaTRo0frvvvuU926deXr66smTZpo2LBh6t27tyT64W4l+flfbgz9ubxz585p1KhR6tmzp4KDgyXRD3d4+eWX5ePjo6FDhxa4vjT1xKfE3gnwAIMHD9aOHTv03XffubuUMu23337T448/rsTERPn7+7u7nDIvNzdXN9xwg1566SVJUpMmTbRjxw6999576tu3r5urK3u++OILzZo1S7Nnz1a9evWUnJysYcOGKTIykn4AhcjOztY999wjwzD07rvvurucMmvLli168803tXXrVlksFneX43Ic2fIQlSpVkre3d77Z1o4ePaqIiAg3VVW6DBkyRAsXLtSqVat0zTXX2JZHREQoKytLaWlpduMv/uwjIiIK7E3eusLGBAcHKyAgwNm749G2bNmiY8eOqWnTpvLx8ZGPj4/WrFmjt956Sz4+PqpSpQo9KUFVq1ZVbGys3bLrr79ehw4dkvS/z7Own08RERE6duyY3frz58/r+PHjxeoZpJEjR9qObjVo0EAPPPCAhg8fbjsKTD/cqyQ//8uNoT/55QWtX3/9VYmJibajWhL9KGnr1q3TsWPHVKNGDdu/8b/++queeOIJRUdHSypdPSFseQir1apmzZppxYoVtmW5ublasWKF4uLi3FiZ5zMMQ0OGDNHXX3+tlStXKiYmxm59s2bN5Ovra/fZ79mzR4cOHbJ99nFxcfrpp5/sfjDk/TDP+yU1Li7Obht5Y+hffrfccot++uknJScn2x433HCDevfubfszPSk5rVu3znc7hF9++UVRUVGSpJiYGEVERNh9lunp6dq0aZNdP9LS0rRlyxbbmJUrVyo3N1ctW7a0jVm7dq2ys7NtYxITE1WnTh1VqFDBZfvnaTIyMuTlZf/Pt7e3t3JzcyXRD3cryc+fn2GOyQtae/fu1fLly1WxYkW79fSjZD3wwAPavn273b/xkZGRGjlypJYuXSqplPWkxKbiwFX7/PPPDT8/P2PmzJnGrl27jIEDBxqhoaF2s62h+AYNGmSEhIQYq1evNo4cOWJ7ZGRk2MY8+uijRo0aNYyVK1caP/zwgxEXF2fExcXZ1udNMx4fH28kJycbS5YsMSpXrlzgNOMjR440du/ebUybNo1pxovh4tkIDYOelKTNmzcbPj4+xosvvmjs3bvXmDVrlhEYGGh8+umntjGTJ082QkNDjW+++cbYvn27cfvttxc41XWTJk2MTZs2Gd99951x7bXX2k3jm5aWZlSpUsV44IEHjB07dhiff/65ERgYyFTjl+jbt69RrVo129Tv8+bNMypVqmQ89dRTtjH0w7VOnTpl/Pjjj8aPP/5oSDJee+0148cff7TNbldSn//69esNHx8f45VXXjF2795tPP/882VyqvHC+pGVlWXcdtttxjXXXGMkJyfb/Tt/8Sx29MO5ivo7cqlLZyM0jNLTE8KWh3n77beNGjVqGFar1WjRooWxceNGd5fk8SQV+JgxY4ZtzNmzZ43/+7//MypUqGAEBgYad955p3HkyBG77Rw8eNDo2rWrERAQYFSqVMl44oknjOzsbLsxq1atMho3bmxYrVajZs2adu+Bwl0atuhJyVqwYIFRv359w8/Pz6hbt64xffp0u/W5ubnGc889Z1SpUsXw8/MzbrnlFmPPnj12Y/7++2+jZ8+eRlBQkBEcHGw8+OCDxqlTp+zGbNu2zbjpppsMPz8/o1q1asbkyZNdvm+eJj093Xj88ceNGjVqGP7+/kbNmjWNZ555xu4XR/rhWqtWrSrw342+ffsahlGyn/8XX3xhXHfddYbVajXq1atnLFq0yGX7bVaF9SMlJeWy/86vWrXKtg364VxF/R25VEFhq7T0xGIYF91yHgAAAADgFFyzBQAAAAAuQNgCAAAAABcgbAEAAACACxC2AAAAAMAFCFsAAAAA4AKELQAAAABwAcIWAAAAALgAYQsAAAAAXICwBQAoldq3b69hw4a5uwxTmDlzpkJDQ91dBgCUOYQtAECx/Pnnnxo0aJBq1KghPz8/RUREqHPnzlq/fv1Vb7skA9LMmTNlsVjyPfz9/Yu1HYvFovnz57umyBLYPgDAdXzcXQAAwLP06NFDWVlZ+vjjj1WzZk0dPXpUK1as0N9//33F28zKypLVanVilY4JDg7Wnj177JZZLBanv4+79g8A4F4c2QIAOCwtLU3r1q3Tyy+/rA4dOigqKkotWrTQmDFjdNttt9nGHTp0SLfffruCgoIUHByse+65R0ePHrWtHzdunBo3bqwPP/xQMTEx8vf3V79+/bRmzRq9+eabtqNMBw8elCTt2LFDXbt2VVBQkKpUqaIHHnhAf/31l217Z86cUZ8+fRQUFKSqVavq1VdfdWh/LBaLIiIi7B5VqlSxrW/fvr2GDh2qp556SmFhYYqIiNC4ceNs66OjoyVJd955pywWi+15Qfv3ySefqGLFisrMzLSr4Y477tADDzzgUL0HDx6UxWLRvHnz1KFDBwUGBqpRo0ZKSkqyGzdz5kzVqFFDgYGBuvPOOwsMwt98842aNm0qf39/1axZU+PHj9f58+clSRMmTFBkZKTd6xISEtShQwfl5uY6VCsAgLAFACiGoKAgBQUFaf78+flCQ57c3FzdfvvtOn78uNasWaPExEQdOHBA9957r924ffv26auvvtK8efOUnJysN998U3FxcRowYICOHDmiI0eOqHr16kpLS9PNN9+sJk2a6IcfftCSJUt09OhR3XPPPbZtjRw5UmvWrNE333yjZcuWafXq1dq6datT9vnjjz9WuXLltGnTJk2ZMkUTJkxQYmKiJOn777+XJM2YMUNHjhyxPS9o//7xj38oJydH//nPf2xjjh07pkWLFumhhx4qVk3PPPOMnnzySSUnJ+u6665Tz549bUFp06ZN6t+/v4YMGaLk5GR16NBBL7zwgt3r161bpz59+ujxxx/Xrl279P7772vmzJl68cUXbduPjo7Www8/LEmaNm2aNmzYoI8//lheXvzqAAAOMwAAKIYvv/zSqFChguHv72/ceOONxpgxY4xt27bZ1i9btszw9vY2Dh06ZFu2c+dOQ5KxefNmwzAM4/nnnzd8fX2NY8eO2W27Xbt2xuOPP263bOLEiUZ8fLzdst9++82QZOzZs8c4deqUYbVajS+++MK2/u+//zYCAgLybetiM2bMMCQZ5cqVs3t06dLFrp6bbrrJ7nXNmzc3Ro0aZXsuyfj666/txlxu/wYNGmR07drV9vzVV181atasaeTm5l62zou3n5KSYkgyPvzwQ9v6vM929+7dhmEYRs+ePY1u3brZbePee+81QkJCbM9vueUW46WXXrIb8+9//9uoWrWq7fn+/fuN8uXLG6NGjTICAgKMWbNmXbZGAEDBuGYLAFAsPXr0UEJCgtatW6eNGzfq22+/1ZQpU/Thhx+qX79+2r17t6pXr67q1avbXhMbG6vQ0FDt3r1bzZs3lyRFRUWpcuXKRb7ftm3btGrVKgUFBeVbt3//fp09e1ZZWVlq2bKlbXlYWJjq1KlT5LbLly+f7whYQECA3fOGDRvaPa9ataqOHTtW5LYL2r8BAwaoefPmOnz4sKpVq6aZM2eqX79+xb5O7OKaqlatKunCUbK6detq9+7duvPOO+3Gx8XFacmSJbbn27Zt0/r1621HsiQpJydH586dU0ZGhgIDA1WzZk298soreuSRR3TvvfeqV69exaoRAMAEGQCAK+Dv769OnTqpU6dOeu655/Twww/r+eefV79+/RzeRrly5Rwad/r0aXXv3l0vv/xyvnVVq1bVvn37HH7PS3l5eal27dqFjvH19bV7brFYHLpuqaD9a9KkiRo1aqRPPvlE8fHx2rlzpxYtWlS8oi+pKS+oFedaqtOnT2v8+PG666678q27eDbGtWvXytvbWwcPHtT58+fl48OvDQBQHJx4DQC4arGxsTpz5owk6frrr9dvv/2m3377zbZ+165dSktLU2xsbKHbsVqtysnJsVvWtGlT7dy5U9HR0apdu7bdo1y5cqpVq5Z8fX21adMm22tOnDihX375xYl7eHm+vr75ai7Mww8/rJkzZ2rGjBnq2LGj3RFAZ7j++uvtPgtJ2rhxo93zpk2bas+ePfk+z9q1a9uuyZozZ47mzZun1atX69ChQ5o4caJT6wSAsoCwBQBw2N9//62bb75Zn376qbZv366UlBTNnTtXU6ZM0e233y5J6tixoxo0aKDevXtr69at2rx5s/r06aN27drphhtuKHT70dHR2rRpkw4ePKi//vpLubm5Gjx4sI4fP66ePXvq+++/1/79+7V06VI9+OCDysnJUVBQkPr376+RI0dq5cqV2rFjh/r16+fQRA6GYSg1NTXfozhHiaKjo7VixQqlpqbqxIkTRY7v1auXfv/9d33wwQfFnhjDEUOHDtWSJUv0yiuvaO/evXrnnXfsTiGUpLFjx+qTTz7R+PHjtXPnTu3evVuff/65nn32WUnS77//rkGDBunll1/WTTfdpBkzZuill17KF9oAAIUjbAEAHBYUFKSWLVvq9ddfV9u2bVW/fn0999xzGjBggN555x1JF05r++abb1ShQgW1bdtWHTt2VM2aNTVnzpwit//kk0/K29tbsbGxqly5sg4dOqTIyEitX79eOTk5io+PV4MGDTRs2DCFhobaAtXUqVPVpk0bde/eXR07dtRNN92kZs2aFfl+6enpqlq1ar6HI9dk5Xn11VeVmJio6tWrq0mTJkWODwkJUY8ePRQUFKQ77rjD4fdxVKtWrfTBBx/ozTffVKNGjbRs2TJbiMrTuXNnLVy4UMuWLVPz5s3VqlUrvf7664qKipJhGOrXr59atGihIUOG2MYPGjRI999/v06fPu30mgGgtLIYhmG4uwgAAMqSW265RfXq1dNbb73l7lIAAC5E2AIAoIScOHFCq1ev1t13361du3Y5NGMiAMBzMa0QAAAlpEmTJjpx4oRefvllghYAlAEc2QIAAAAAF2CCDAAAAABwAcIWAAAAALgAYQsAAAAAXICwBQAAAAAuQNgCAAAAABcgbAEAAACACxC2AAAAAMAFCFsAAAAA4AL/D2JnpGzt9EjJAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(df['tok'].values, marker='o', linestyle='-')\n", + "plt.xlabel('Sorted Entry Index')\n", + "plt.ylabel('Token Count')\n", + "plt.title(\"Line Plot of Token Counts (Sorted Ascending)\")\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "01127bdd-aa73-4118-a5b8-53e5ed709bf5", + "metadata": { + "id": "01127bdd-aa73-4118-a5b8-53e5ed709bf5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "outputId": "0931d84d-0b77-433b-cbc7-8037bcc8ea41" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Input Output \\\n", + "1262 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... B \n", + "1202 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1289 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1246 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "1358 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "5938 यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस... A \n", + "5874 यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस... B \n", + "12115 साल 1993 में, एक पशुपालक किसान को 20 एकड़ के स... A \n", + "10876 एक भूमि-विकास कंपनी के पास दक्षिणपश्चिम में 40... C \n", + "11923 साल 1993 में, एक ज़मींदार के पास एक अंगूर के ब... C \n", + "\n", + " Sub-Domain Dataset tok \n", + "1262 college_medicine MMLU 1917 \n", + "1202 college_medicine MMLU 1894 \n", + "1289 college_medicine MMLU 1892 \n", + "1246 college_medicine MMLU 1831 \n", + "1358 college_medicine MMLU 1830 \n", + "5938 high_school_world_history MMLU 1313 \n", + "5874 high_school_world_history MMLU 1292 \n", + "12115 professional_law MMLU 1279 \n", + "10876 professional_law MMLU 1277 \n", + "11923 professional_law MMLU 1266 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InputOutputSub-DomainDatasettok
1262सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Bcollege_medicineMMLU1917
1202सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU1894
1289सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU1892
1246सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU1831
1358सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU1830
5938यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस...Ahigh_school_world_historyMMLU1313
5874यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस...Bhigh_school_world_historyMMLU1292
12115साल 1993 में, एक पशुपालक किसान को 20 एकड़ के स...Aprofessional_lawMMLU1279
10876एक भूमि-विकास कंपनी के पास दक्षिणपश्चिम में 40...Cprofessional_lawMMLU1277
11923साल 1993 में, एक ज़मींदार के पास एक अंगूर के ब...Cprofessional_lawMMLU1266
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 14042,\n \"fields\": [\n {\n \"column\": \"Input\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 13981,\n \"samples\": [\n \"\\u0928\\u093f\\u092e\\u094d\\u0928\\u0932\\u093f\\u0916\\u093f\\u0924 \\u092e\\u0947\\u0902 \\u0938\\u0947 \\u0915\\u093f\\u0938 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925 \\u0915\\u0940 \\u0906\\u0923\\u094d\\u0935\\u093f\\u0915 \\u0938\\u0902\\u0930\\u091a\\u0928\\u093e \\u0905\\u0938\\u092e\\u092e\\u093f\\u0924 \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948? ### A) SF4 B) PCl5 C) BF3 D) CO2 ### MCQ ### \",\n \"\\u090f\\u0915\\u094d\\u0935\\u093f\\u0928\\u093e\\u0938 \\u0915\\u093e \\u0928\\u0948\\u0924\\u093f\\u0915 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924 \\u092a\\u094d\\u0930\\u093e\\u0915\\u0943\\u0924\\u093f\\u0915 \\u0915\\u093e\\u0928\\u0942\\u0928 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924 ### A) \\u092a\\u0930\\u093f\\u0923\\u093e\\u092e\\u0935\\u093e\\u0926\\u0964 B) \\u0915\\u093e \\u090f\\u0915 \\u0938\\u0902\\u0938\\u094d\\u0915\\u0930\\u0923 \\u0939\\u0948\\u0964 C) \\u0905\\u0927\\u093f\\u0915\\u093e\\u0930-\\u0906\\u0927\\u093e\\u0930\\u093f\\u0924 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924. D) \\u092a\\u0941\\u0923\\u094d\\u092f \\u0928\\u0948\\u0924\\u093f\\u0915\\u0924\\u093e\\u0964 ### MCQ ### \",\n \"\\u091c\\u093f\\u0938 \\u0926\\u0930 \\u092a\\u0930 \\u0936\\u0941\\u0926\\u094d\\u0927\\u093f\\u0915\\u0930\\u0923 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u092a\\u093e\\u0928\\u0940 \\u0915\\u0947 \\u091f\\u0948\\u0902\\u0915 \\u0938\\u0947 \\u0926\\u0942\\u0937\\u093f\\u0924 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925\\u094b\\u0902 \\u0915\\u094b \\u0939\\u091f\\u093e \\u0938\\u0915\\u0924\\u0940 \\u0939\\u0948, \\u0935\\u0939 \\u0936\\u0947\\u0937 \\u0926\\u0942\\u0937\\u093f\\u0924 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925\\u094b\\u0902 \\u0915\\u0940 \\u092e\\u093e\\u0924\\u094d\\u0930\\u093e \\u0915\\u0947 \\u0938\\u092e\\u093e\\u0928\\u0941\\u092a\\u093e\\u0924\\u0940 \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948. \\u0905\\u0917\\u0930 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u0915\\u0947 \\u092a\\u0939\\u0932\\u0947 \\u092e\\u093f\\u0928\\u091f \\u0915\\u0947 \\u0926\\u094c\\u0930\\u093e\\u0928 20% \\u0926\\u0942\\u0937\\u0915 \\u0915\\u094b \\u0939\\u091f\\u093e\\u092f\\u093e \\u091c\\u093e \\u0938\\u0915\\u0924\\u093e \\u0939\\u0948 \\u0914\\u0930 \\u092a\\u093e\\u0928\\u0940 \\u0915\\u094b \\u0938\\u0941\\u0930\\u0915\\u094d\\u0937\\u093f\\u0924 \\u092c\\u0928\\u093e\\u0928\\u0947 \\u0915\\u0947 \\u0932\\u093f\\u090f 98% \\u0915\\u094b \\u0939\\u091f\\u093e\\u092f\\u093e \\u091c\\u093e\\u0928\\u093e \\u091a\\u093e\\u0939\\u093f\\u090f, \\u0924\\u094b \\u0936\\u0941\\u0926\\u094d\\u0927\\u093f\\u0915\\u0930\\u0923 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u092e\\u0947\\u0902 \\u0932\\u0917\\u092d\\u0917 \\u0915\\u093f\\u0924\\u0928\\u093e \\u0938\\u092e\\u092f \\u0932\\u0917\\u0947\\u0917\\u093e? ### A) 2 \\u092e\\u093f\\u0928\\u091f B) 5 \\u092e\\u093f\\u0928\\u091f C) 18 \\u092e\\u093f\\u0928\\u091f D) 20 \\u092e\\u093f\\u0928\\u091f ### MCQ ### \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"A\",\n \"C\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sub-Domain\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 57,\n \"samples\": [\n \"college_medicine\",\n \"security_studies\",\n \"high_school_microeconomics\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Dataset\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"MMLU\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tok\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 164,\n \"min\": 29,\n \"max\": 1917,\n \"num_unique_values\": 831,\n \"samples\": [\n 251\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "df.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "5af6bcac-3c98-421b-8f4b-854b57db8416", + "metadata": { + "id": "5af6bcac-3c98-421b-8f4b-854b57db8416", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + }, + "outputId": "c7870936-d0b2-4d04-da68-55dfae67eb2b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'from tqdm import tqdm\\nimport torch\\ndef generate_responses_phi4_batched(df, tokenizer, model, batch_size=8):\\n responses = []\\n for i in tqdm(range(0, len(df), batch_size), desc=\"Processing Batches\"):\\n batch = df[\\'Input\\'][i:i + batch_size].tolist()\\n prompts = [f\"### INPUT : {text} ### MCQ ### OUTPUT :\" for text in batch]\\n messages = [{\"role\": \"user\", \"content\": prompt} for prompt in prompts]\\n inputs = [tokenizer.apply_chat_template([msg], tokenize=True, add_generation_prompt=True, return_tensors=\"pt\") for msg in messages]\\n max_length = max(input_tensor.size(1) for input_tensor in inputs)\\n padded_inputs = []\\n for input_tensor in inputs:\\n pad_size = max_length - input_tensor.size(1)\\n padded_tensor = torch.nn.functional.pad(input_tensor, (0, pad_size), value=tokenizer.pad_token_id)\\n padded_inputs.append(padded_tensor)\\n batch_inputs = torch.cat(padded_inputs, dim=0).to(\"cuda\")\\n outputs = model.generate(input_ids=batch_inputs, max_new_tokens=20, use_cache=True, temperature=0.1, min_p=0.1, pad_token_id=tokenizer.eos_token_id)\\n batch_responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)\\n for response in batch_responses:\\n processed_response = response.split(\"### OUTPUT :\\nassistant\")[-1].strip()\\n responses.append(processed_response)\\n df[\\'Response\\'] = responses\\n return df'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 66 + } + ], + "source": [ + "\"\"\"from tqdm import tqdm\n", + "import torch\n", + "def generate_responses_phi4_batched(df, tokenizer, model, batch_size=8):\n", + " responses = []\n", + " for i in tqdm(range(0, len(df), batch_size), desc=\"Processing Batches\"):\n", + " batch = df['Input'][i:i + batch_size].tolist()\n", + " prompts = [f\"### INPUT : {text} ### MCQ ### OUTPUT :\" for text in batch]\n", + " messages = [{\"role\": \"user\", \"content\": prompt} for prompt in prompts]\n", + " inputs = [tokenizer.apply_chat_template([msg], tokenize=True, add_generation_prompt=True, return_tensors=\"pt\") for msg in messages]\n", + " max_length = max(input_tensor.size(1) for input_tensor in inputs)\n", + " padded_inputs = []\n", + " for input_tensor in inputs:\n", + " pad_size = max_length - input_tensor.size(1)\n", + " padded_tensor = torch.nn.functional.pad(input_tensor, (0, pad_size), value=tokenizer.pad_token_id)\n", + " padded_inputs.append(padded_tensor)\n", + " batch_inputs = torch.cat(padded_inputs, dim=0).to(\"cuda\")\n", + " outputs = model.generate(input_ids=batch_inputs, max_new_tokens=20, use_cache=True, temperature=0.1, min_p=0.1, pad_token_id=tokenizer.eos_token_id)\n", + " batch_responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)\n", + " for response in batch_responses:\n", + " processed_response = response.split(\"### OUTPUT :\\nassistant\")[-1].strip()\n", + " responses.append(processed_response)\n", + " df['Response'] = responses\n", + " return df\"\"\"" + ] + }, + { + "cell_type": "code", + "source": [ + "df[14000:]" + ], + "metadata": { + "id": "DnE5jnbPTd03", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "93fbcec5-1269-4a00-bcbf-b59fb49138fc" + }, + "id": "DnE5jnbPTd03", + "execution_count": 67, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Input Output \\\n", + "2399 100 का तीन पांचवा भाग क्या है? ### A) 3 B) 5 ... D \n", + "2277 कौन सी संख्या 7 का गुणज है? ### A) 27 B) 48 C... C \n", + "7890 तीन स्टूज में से कौन अन्य से संबंधित नहीं था? ... B \n", + "2274 −8 • (−4) का गुणनफल ज्ञात कीजिए। ### A) −4 B)... C \n", + "7667 लौवर संग्रहालय कहां है? ### A) पेरिस B) ल्योन... A \n", + "7410 पेरेग्रन किस तरह का जानवर है? ### A) मूज़ B) ... C \n", + "669 पानी का pH मान कितना है? ### A) 3.5 B) 7 C) 1... B \n", + "3204 Python 3 में, निम्न में से कौन सा फ़्लोर डिवीज... B \n", + "7421 आप एक युवा गाय को क्या कहते हैं? ### A) घोड़... D \n", + "2107 किस संख्या का निरपेक्ष मान 5 से अधिक है? ### ... A \n", + "38 परिमित क्षेत्र Z_7 के लिए जनरेटर पता करें. ###... C \n", + "7529 आपका हॉलक्स क्या है? ### A) कान का लोब B) जीभ... D \n", + "2126 एक दशक में कितने वर्ष होते हैं? ### A) 5 B) 1... B \n", + "7722 इनमें से कौन मसाला नहीं है? ### A) डिल B) सौं... C \n", + "1552 WPA किस प्रकार के एन्क्रिप्शन का उपयोग करता है... C \n", + "13949 भक्ति का प्रायः क्या अनुवाद किया जाता है? ### ... C \n", + "3142 निम्नलिखित में से कौन सा एक रेडियोधर्मी तत्व ह... C \n", + "2112 Compute 22 / 2 + 9. ### A) 10 B) 11 C) 20 D) ... C \n", + "5077 निम्नलिखित में से कौन द्वितीयक प्रबलक है? ### ... C \n", + "7872 बेसबॉल में कितनी गेंदें वॉक करती हैं? ### A) ... D \n", + "7737 इनमें से कौन सी फलियां नहीं हैं? ### A) फलिया... C \n", + "2150 8 + 8 ÷ 2 + 2 = ### A) 4 B) 8 C) 10 D) 14 ###... D \n", + "3161 निम्नलिखित में से किसे मेटलॉइड माना जाता है? #... C \n", + "8041 इनमें से कौन सी मिर्च का प्रकार नहीं है? ### ... B \n", + "77 वलय Z x Z की विशेषता पता करें. ### A) 0 B) 3 ... A \n", + "7744 जिराफ़ की कितनी आँखें होती हैं? ### A) एक बार... B \n", + "1766 नीले रंग का पूरक रंग है ### A) मैजेंटा B) पील... B \n", + "3899 सरकार इसका उपयोग करके मुद्रास्फीति को मापती है... C \n", + "7548 सर्वहारा वर्ग क्या है? ### A) बेघर B) राजपरिव... D \n", + "7686 अरबी अंक '2' को कैसे लिखा जाता है? ### A) 2 B... A \n", + "7971 आइस हॉकी खेल में कितने पीरियड होते हैं? ### A... C \n", + "7681 इनमें से कौन सा शब्द सही वर्तनी वाला है? ### ... C \n", + "7851 बैकगैमौन कितने खिलाड़ियों का खेल है? ### A) द... A \n", + "8138 गेरी एडम्स किस संगठन के अध्यक��ष हैं? ### A) G... C \n", + "1190 (1+i)^10 = ### A) 1 B) i C) 32 D) 32i ### MCQ... D \n", + "7624 इनमें से कौन सा सामान्यतः ज्ञात निवेश खाता है?... C \n", + "8005 निम्नलिखित में से कौन सा तत्व धातु है? ### A)... D \n", + "2087 −4 + ( −3 )= ### A) −7 B) −1 C) 1 D) 7 ### M... A \n", + "8009 माणिक्य किस रंग का होता है? ### A) लाल B) काल... A \n", + "7772 इनमें से कौन सा शब्द क्रिया विशेषण है? ### A)... D \n", + "7585 बल = द्रव्यमान = क्या? ### A) वेग B) दूरी C) ... C \n", + "2983 एंटीमोनी का प्रतीक … है ### A) W B) Sb C) Fe ... B \n", + "\n", + " Sub-Domain Dataset tok \n", + "2399 elementary_mathematics MMLU 38 \n", + "2277 elementary_mathematics MMLU 38 \n", + "7890 miscellaneous MMLU 38 \n", + "2274 elementary_mathematics MMLU 38 \n", + "7667 miscellaneous MMLU 38 \n", + "7410 miscellaneous MMLU 38 \n", + "669 clinical_knowledge MMLU 38 \n", + "3204 high_school_computer_science MMLU 38 \n", + "7421 miscellaneous MMLU 38 \n", + "2107 elementary_mathematics MMLU 38 \n", + "38 abstract_algebra MMLU 38 \n", + "7529 miscellaneous MMLU 38 \n", + "2126 elementary_mathematics MMLU 37 \n", + "7722 miscellaneous MMLU 37 \n", + "1552 computer_security MMLU 37 \n", + "13949 world_religions MMLU 37 \n", + "3142 high_school_chemistry MMLU 37 \n", + "2112 elementary_mathematics MMLU 37 \n", + "5077 high_school_psychology MMLU 37 \n", + "7872 miscellaneous MMLU 37 \n", + "7737 miscellaneous MMLU 37 \n", + "2150 elementary_mathematics MMLU 36 \n", + "3161 high_school_chemistry MMLU 36 \n", + "8041 miscellaneous MMLU 36 \n", + "77 abstract_algebra MMLU 36 \n", + "7744 miscellaneous MMLU 36 \n", + "1766 conceptual_physics MMLU 36 \n", + "3899 high_school_macroeconomics MMLU 35 \n", + "7548 miscellaneous MMLU 35 \n", + "7686 miscellaneous MMLU 35 \n", + "7971 miscellaneous MMLU 35 \n", + "7681 miscellaneous MMLU 35 \n", + "7851 miscellaneous MMLU 35 \n", + "8138 miscellaneous MMLU 35 \n", + "1190 college_mathematics MMLU 33 \n", + "7624 miscellaneous MMLU 33 \n", + "8005 miscellaneous MMLU 33 \n", + "2087 elementary_mathematics MMLU 32 \n", + "8009 miscellaneous MMLU 32 \n", + "7772 miscellaneous MMLU 31 \n", + "7585 miscellaneous MMLU 31 \n", + "2983 high_school_chemistry MMLU 29 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InputOutputSub-DomainDatasettok
2399100 का तीन पांचवा भाग क्या है? ### A) 3 B) 5 ...Delementary_mathematicsMMLU38
2277कौन सी संख्या 7 का गुणज है? ### A) 27 B) 48 C...Celementary_mathematicsMMLU38
7890तीन स्टूज में से कौन अन्य से संबंधित नहीं था? ...BmiscellaneousMMLU38
2274−8 • (−4) का गुणनफल ज्ञात कीजिए। ### A) −4 B)...Celementary_mathematicsMMLU38
7667लौवर संग्रहालय कहां है? ### A) पेरिस B) ल्योन...AmiscellaneousMMLU38
7410पेरेग्रन किस तरह का जानवर है? ### A) मूज़ B) ...CmiscellaneousMMLU38
669पानी का pH मान कितना है? ### A) 3.5 B) 7 C) 1...Bclinical_knowledgeMMLU38
3204Python 3 में, निम्न में से कौन सा फ़्लोर डिवीज...Bhigh_school_computer_scienceMMLU38
7421आप एक युवा गाय को क्या कहते हैं? ### A) घोड़...DmiscellaneousMMLU38
2107किस संख्या का निरपेक्ष मान 5 से अधिक है? ### ...Aelementary_mathematicsMMLU38
38परिमित क्षेत्र Z_7 के लिए जनरेटर पता करें. ###...Cabstract_algebraMMLU38
7529आपका हॉलक्स क्या है? ### A) कान का लोब B) जीभ...DmiscellaneousMMLU38
2126एक दशक में कितने वर्ष होते हैं? ### A) 5 B) 1...Belementary_mathematicsMMLU37
7722इनमें से कौन मसाला नहीं है? ### A) डिल B) सौं...CmiscellaneousMMLU37
1552WPA किस प्रकार के एन्क्रिप्शन का उपयोग करता है...Ccomputer_securityMMLU37
13949भक्ति का प्रायः क्या अनुवाद किया जाता है? ### ...Cworld_religionsMMLU37
3142निम्नलिखित में से कौन सा एक रेडियोधर्मी तत्व ह...Chigh_school_chemistryMMLU37
2112Compute 22 / 2 + 9. ### A) 10 B) 11 C) 20 D) ...Celementary_mathematicsMMLU37
5077निम्नलिखित में से कौन द्वितीयक प्रबलक है? ### ...Chigh_school_psychologyMMLU37
7872बेसबॉल में कितनी गेंदें वॉक करती हैं? ### A) ...DmiscellaneousMMLU37
7737इनमें से कौन सी फलियां नहीं हैं? ### A) फलिया...CmiscellaneousMMLU37
21508 + 8 ÷ 2 + 2 = ### A) 4 B) 8 C) 10 D) 14 ###...Delementary_mathematicsMMLU36
3161निम्नलिखित में से किसे मेटलॉइड माना जाता है? #...Chigh_school_chemistryMMLU36
8041इनमें से कौन सी मिर्च का प्रकार नहीं है? ### ...BmiscellaneousMMLU36
77वलय Z x Z की विशेषता पता करें. ### A) 0 B) 3 ...Aabstract_algebraMMLU36
7744जिराफ़ की कितनी आँखें होती हैं? ### A) एक बार...BmiscellaneousMMLU36
1766नीले रंग का पूरक रंग है ### A) मैजेंटा B) पील...Bconceptual_physicsMMLU36
3899सरकार इसका उपयोग करके मुद्रास्फीति को मापती है...Chigh_school_macroeconomicsMMLU35
7548सर्वहारा वर्ग क्या है? ### A) बेघर B) राजपरिव...DmiscellaneousMMLU35
7686अरबी अंक '2' को कैसे लिखा जाता है? ### A) 2 B...AmiscellaneousMMLU35
7971आइस हॉकी खेल में कितने पीरियड होते हैं? ### A...CmiscellaneousMMLU35
7681इनमें से कौन सा शब्द सही वर्तनी वाला है? ### ...CmiscellaneousMMLU35
7851बैकगैमौन कितने खिलाड़ियों का खेल है? ### A) द...AmiscellaneousMMLU35
8138गेरी एडम्स किस संगठन के अध्यक्ष हैं? ### A) G...CmiscellaneousMMLU35
1190(1+i)^10 = ### A) 1 B) i C) 32 D) 32i ### MCQ...Dcollege_mathematicsMMLU33
7624इनमें से कौन सा सामान्यतः ज्ञात निवेश खाता है?...CmiscellaneousMMLU33
8005निम्नलिखित में से कौन सा तत्व धातु है? ### A)...DmiscellaneousMMLU33
2087−4 + ( −3 )= ### A) −7 B) −1 C) 1 D) 7 ### M...Aelementary_mathematicsMMLU32
8009माणिक्य किस रंग का होता है? ### A) लाल B) काल...AmiscellaneousMMLU32
7772इनमें से कौन सा शब्द क्रिया विशेषण है? ### A)...DmiscellaneousMMLU31
7585बल = द्रव्यमान = क्या? ### A) वेग B) दूरी C) ...CmiscellaneousMMLU31
2983एंटीमोनी का प्रतीक … है ### A) W B) Sb C) Fe ...Bhigh_school_chemistryMMLU29
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df[14000:]\",\n \"rows\": 42,\n \"fields\": [\n {\n \"column\": \"Input\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 42,\n \"samples\": [\n \"\\u091c\\u093f\\u0930\\u093e\\u092b\\u093c \\u0915\\u0940 \\u0915\\u093f\\u0924\\u0928\\u0940 \\u0906\\u0901\\u0916\\u0947\\u0902 \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948\\u0902? ### A) \\u090f\\u0915 \\u092c\\u093e\\u0930 B) \\u0926\\u094b \\u092c\\u093e\\u0930 C) \\u0924\\u0940\\u0928 \\u092c\\u093e\\u0930 D) \\u091a\\u093e\\u0930 ### MCQ ### \",\n \"\\u0907\\u0928\\u092e\\u0947\\u0902 \\u0938\\u0947 \\u0915\\u094c\\u0928 \\u092e\\u0938\\u093e\\u0932\\u093e \\u0928\\u0939\\u0940\\u0902 \\u0939\\u0948? ### A) \\u0921\\u093f\\u0932 B) \\u0938\\u094c\\u0902\\u092b C) \\u0916\\u0940\\u0930\\u093e D) \\u0915\\u0947\\u092f\\u0947\\u0928 ### MCQ ### \",\n \"\\u0906\\u092a \\u090f\\u0915 \\u092f\\u0941\\u0935\\u093e \\u0917\\u093e\\u092f \\u0915\\u094b \\u0915\\u094d\\u092f\\u093e \\u0915\\u0939\\u0924\\u0947 \\u0939\\u0948\\u0902? ### A) \\u0918\\u094b\\u0921\\u093c\\u0940 B) \\u092d\\u0947\\u0921\\u093c C) \\u092c\\u091a\\u094d\\u091a\\u093e D) \\u092c\\u091b\\u0921\\u093c\\u093e ### MCQ ### \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"C\",\n \"A\",\n \"D\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sub-Domain\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 12,\n \"samples\": [\n \"high_school_macroeconomics\",\n \"conceptual_physics\",\n \"elementary_mathematics\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Dataset\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"MMLU\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tok\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 29,\n \"max\": 38,\n \"num_unique_values\": 8,\n \"samples\": [\n 37\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 67 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "from transformers import AutoTokenizer, AutoModelForCausalLM\n", + "input_text = \"जोड़ें 46,911 + 653,092 ### A) 699,903 B) 700,003 C) 913,203 D) 1,122,202 ### MCQ ###\tRespond with just one letter based on these options : \"\n", + "prompt = f\"### INPUT : {input_text} RESPONSE : \"\n", + "message = [{\"role\": \"user\", \"content\": prompt}]\n", + "inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n", + "with torch.no_grad():\n", + " outputs = model.generate(input_ids=inputs, max_new_tokens=1, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\n", + " next_token_logits = outputs.scores[0]\n", + "probs = F.softmax(next_token_logits, dim=-1)\n", + "token_ids_a = tokenizer.encode('A', add_special_tokens=False)[0]\n", + "token_ids_b = tokenizer.encode('B', add_special_tokens=False)[0]\n", + "token_ids_c = tokenizer.encode('C', add_special_tokens=False)[0]\n", + "token_ids_d = tokenizer.encode('D', add_special_tokens=False)[0]\n", + "prob_a = probs[0, token_ids_a].item()\n", + "prob_b = probs[0, token_ids_b].item()\n", + "prob_c = probs[0, token_ids_c].item()\n", + "prob_d = probs[0, token_ids_d].item()\n", + "print(f\"Probability of 'A': {prob_a:.4f}\")\n", + "print(f\"Probability of 'B': {prob_b:.4f}\")\n", + "print(f\"Probability of 'C': {prob_c:.4f}\")\n", + "print(f\"Probability of 'D': {prob_d:.4f}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "x9Gu8g6zZy_Q", + "outputId": "34e3da1a-ac7d-4958-d0fd-f1a0b8b6748a" + }, + "id": "x9Gu8g6zZy_Q", + "execution_count": 68, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Probability of 'A': 0.2249\n", + "Probability of 'B': 0.3273\n", + "Probability of 'C': 0.1204\n", + "Probability of 'D': 0.0569\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "from transformers import AutoTokenizer, AutoModelForCausalLM\n", + "input_text = \"दिए गए बहुपद के संकेतित परिमित क्षेत्र में गुणांकों के साथ सभी शून्य बताएं. x^5 + 3x^3 + x^2 + 2x in Z_5 ### A) 0 B) 1 C) 0,1 D) 0,4\t### MCQ ### Respond with just one letter based on these options : \"\n", + "prompt = f\"### INPUT : {input_text} RESPONSE : \"\n", + "message = [{\"role\": \"user\", \"content\": prompt}]\n", + "inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n", + "outputs = model.generate(input_ids=inputs, max_new_tokens=200, use_cache=True, temperature=0.1, min_p=0.1, pad_token_id=tokenizer.eos_token_id)\n", + "response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n", + "processed_response = response.split(\"### RESPONSE :\\nmodel\")[-1].strip()\n", + "print(f\"Generated Response (20 tokens):\\n{processed_response}\\n\")\n", + "with torch.no_grad():\n", + " outputs = model.generate(input_ids=inputs, max_new_tokens=1, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\n", + " next_token_logits = outputs.scores[0]\n", + "probs = F.softmax(next_token_logits, dim=-1)\n", + "token_ids_a = tokenizer.encode('A', add_special_tokens=False)[0]\n", + "token_ids_b = tokenizer.encode('B', add_special_tokens=False)[0]\n", + "token_ids_c = tokenizer.encode('C', add_special_tokens=False)[0]\n", + "token_ids_d = tokenizer.encode('D', add_special_tokens=False)[0]\n", + "prob_a = probs[0, token_ids_a].item()\n", + "prob_b = probs[0, token_ids_b].item()\n", + "prob_c = probs[0, token_ids_c].item()\n", + "prob_d = probs[0, token_ids_d].item()\n", + "print(f\"Probability of 'A': {prob_a:.4f}\")\n", + "print(f\"Probability of 'B': {prob_b:.4f}\")\n", + "print(f\"Probability of 'C': {prob_c:.4f}\")\n", + "print(f\"Probability of 'D': {prob_d:.4f}\")" + ], + "metadata": { + "id": "QuuDF-qci19H", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4f1285d3-99fd-4ddd-f5de-0e120f3daead" + }, + "id": "QuuDF-qci19H", + "execution_count": 69, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Generated Response (20 tokens):\n", + "user\n", + "### INPUT : दिए गए बहुपद के संकेतित परिमित क्षेत्र में गुणांकों के साथ सभी शून्य बताएं. x^5 + 3x^3 + x^2 + 2x in Z_5 ### A) 0 B) 1 C) 0,1 D) 0,4\t### MCQ ### Respond with just one letter based on these options : RESPONSE :\n", + "model\n", + "The correct answer is C. Here's why:\n", + "\n", + "**Understanding the problem:**\n", + "\n", + "We are given a polynomial with coefficients in the finite field Z_5 (the integers modulo 5). We need to find all the roots (or zeros) of this polynomial within Z_5.\n", + "\n", + "**Solving the problem:**\n", + "\n", + "1. **Substitute values:** Since we are working in Z_5, we only need to check the values 0, 1, 2, 3, and 4 for the roots.\n", + "\n", + "2. **Check each value:**\n", + " * For x = 0: 0^5 + 3(0)^3 + 0^2 + 2(0) = 0. So, x = 0 is a root.\n", + " * For x = 1: 1^5 + 3(1)^3 + 1^2 + 2(1) = 1 + 3 + 1 +\n", + "\n", + "Probability of 'A': 0.0456\n", + "Probability of 'B': 0.0585\n", + "Probability of 'C': 0.0851\n", + "Probability of 'D': 0.0965\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "input_text = \"जोड़ें 46,911 + 653,092 ### A) 699,903 B) 700,003 C) 913,203 D) 1,122,202 ### MCQ ###\"\n", + "prompt = f\"### INPUT : {input_text} RESPONSE : \"\n", + "message = [{\"role\": \"user\", \"content\": prompt}]\n", + "inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n", + "outputs = model.generate(input_ids=inputs, max_new_tokens=200, use_cache=True, temperature=0.1, min_p=0.1, pad_token_id=tokenizer.eos_token_id)\n", + "response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n", + "processed_response = response.split(\"### RESPONSE :\\nmodel\")[-1].strip()\n", + "print(f\"Generated Response (20 tokens):\\n{processed_response}\\n\")\n", + "with torch.no_grad():\n", + " outputs = model.generate(input_ids=inputs, max_new_tokens=3, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\n", + " scores = outputs.scores\n", + "token_ids_a = tokenizer.encode('A', add_special_tokens=False)[0]\n", + "token_ids_b = tokenizer.encode('B', add_special_tokens=False)[0]\n", + "token_ids_c = tokenizer.encode('C', add_special_tokens=False)[0]\n", + "token_ids_d = tokenizer.encode('D', add_special_tokens=False)[0]\n", + "for i, score in enumerate(scores, 1):\n", + " probs = F.softmax(score, dim=-1)\n", + " prob_a = probs[0, token_ids_a].item()\n", + " prob_b = probs[0, token_ids_b].item()\n", + " prob_c = probs[0, token_ids_c].item()\n", + " prob_d = probs[0, token_ids_d].item()\n", + " print(f\"Probability of 'A' at token {i}: {prob_a:.4f}\")\n", + " print(f\"Probability of 'B' at token {i}: {prob_b:.4f}\")\n", + " print(f\"Probability of 'C' at token {i}: {prob_c:.4f}\")\n", + " print(f\"Probability of 'D' at token {i}: {prob_d:.4f}\")" + ], + "metadata": { + "id": "r1dozae-gO5B", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "06fc9e40-58d5-4915-d48f-f57fd2a8ecf1" + }, + "id": "r1dozae-gO5B", + "execution_count": 70, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Generated Response (20 tokens):\n", + "The correct answer is B) 700,003. \n", + "\n", + "Here's how to add the numbers:\n", + "\n", + "46,911\n", + "+ 653,092\n", + "----------\n", + "700,003\n", + "\n", + "Probability of 'A' at token 1: 0.0057\n", + "Probability of 'B' at token 1: 0.0021\n", + "Probability of 'C' at token 1: 0.0009\n", + "Probability of 'D' at token 1: 0.0014\n", + "Probability of 'A' at token 2: 0.0000\n", + "Probability of 'B' at token 2: 0.0000\n", + "Probability of 'C' at token 2: 0.0000\n", + "Probability of 'D' at token 2: 0.0000\n", + "Probability of 'A' at token 3: 0.0000\n", + "Probability of 'B' at token 3: 0.0000\n", + "Probability of 'C' at token 3: 0.0000\n", + "Probability of 'D' at token 3: 0.0000\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "from transformers import AutoTokenizer, AutoModelForCausalLM\n", + "from tqdm import tqdm\n", + "responses = []\n", + "prob_a1_list = []\n", + "prob_a2_list = []\n", + "prob_a3_list = []\n", + "prob_b1_list = []\n", + "prob_b2_list = []\n", + "prob_b3_list = []\n", + "prob_c1_list = []\n", + "prob_c2_list = []\n", + "prob_c3_list = []\n", + "prob_d1_list = []\n", + "prob_d2_list = []\n", + "prob_d3_list = []\n", + "batch_size = 1\n", + "for start in tqdm(range(0, len(df), batch_size)):\n", + " batch_texts = df['Input'][start:start+batch_size].tolist()\n", + " for input_text in batch_texts:\n", + " prompt = f\"### INPUT : {input_text} Respond with just one letter based on these options : \"\n", + " message = [{\"role\": \"user\", \"content\": prompt}]\n", + " inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n", + " with torch.no_grad():\n", + " outputs = model.generate(input_ids=inputs, max_new_tokens=3, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\n", + " scores = outputs.scores # tuple of [batch_size, vocab_size] for each token\n", + " token_ids_a = tokenizer.encode('A', add_special_tokens=False)[0]\n", + " token_ids_b = tokenizer.encode('B', add_special_tokens=False)[0]\n", + " token_ids_c = tokenizer.encode('C', add_special_tokens=False)[0]\n", + " token_ids_d = tokenizer.encode('D', add_special_tokens=False)[0]\n", + " for i in range(3):\n", + " if i < len(scores):\n", + " probs = F.softmax(scores[i], dim=-1)\n", + " prob_a = probs[0, token_ids_a].item()\n", + " prob_b = probs[0, token_ids_b].item()\n", + " prob_c = probs[0, token_ids_c].item()\n", + " prob_d = probs[0, token_ids_d].item()\n", + " else:\n", + " prob_a, prob_b, prob_c, prob_d = 0.0, 0.0, 0.0, 0.0\n", + " if i == 0:\n", + " prob_a1_list.append(prob_a)\n", + " prob_b1_list.append(prob_b)\n", + " prob_c1_list.append(prob_c)\n", + " prob_d1_list.append(prob_d)\n", + " elif i == 1:\n", + " prob_a2_list.append(prob_a)\n", + " prob_b2_list.append(prob_b)\n", + " prob_c2_list.append(prob_c)\n", + " prob_d2_list.append(prob_d)\n", + " elif i == 2:\n", + " prob_a3_list.append(prob_a)\n", + " prob_b3_list.append(prob_b)\n", + " prob_c3_list.append(prob_c)\n", + " prob_d3_list.append(prob_d)\n", + "df['A1'] = prob_a1_list\n", + "df['A2'] = prob_a2_list\n", + "df['A3'] = prob_a3_list\n", + "df['B1'] = prob_b1_list\n", + "df['B2'] = prob_b2_list\n", + "df['B3'] = prob_b3_list\n", + "df['C1'] = prob_c1_list\n", + "df['C2'] = prob_c2_list\n", + "df['C3'] = prob_c3_list\n", + "df['D1'] = prob_d1_list\n", + "df['D2'] = prob_d2_list\n", + "df['D3'] = prob_d3_list" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uyYEgG7_khiV", + "outputId": "51457caf-4f4d-4fa4-f0da-f044fc52a2fa" + }, + "id": "uyYEgG7_khiV", + "execution_count": 71, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 14042/14042 [53:27<00:00, 4.38it/s]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\"\"\"import torch\n", + "import torch.nn.functional as F\n", + "from transformers import AutoTokenizer, AutoModelForCausalLM\n", + "responses = []\n", + "prob_a_list = []\n", + "prob_b_list = []\n", + "prob_c_list = []\n", + "prob_d_list = []\n", + "batch_size = 1\n", + "for start in tqdm(range(0, len(df), batch_size)):\n", + " batch_texts = df['Input'][start:start+batch_size].tolist()\n", + " for input_text in batch_texts:\n", + " prompt = f\"### INPUT : {input_text} Respond with just one letter based on these options : \"\n", + " message = [{\"role\": \"user\", \"content\": prompt}]\n", + " inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n", + " with torch.no_grad():\n", + " outputs = model.generate(input_ids=inputs, max_new_tokens=1, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\n", + " next_token_logits = outputs.scores[0]\n", + " probs = F.softmax(next_token_logits, dim=-1)\n", + " token_ids_a = tokenizer.encode('A', add_special_tokens=False)[0]\n", + " token_ids_b = tokenizer.encode('B', add_special_tokens=False)[0]\n", + " token_ids_c = tokenizer.encode('C', add_special_tokens=False)[0]\n", + " token_ids_d = tokenizer.encode('D', add_special_tokens=False)[0]\n", + " prob_a_list.append(probs[0, token_ids_a].item())\n", + " prob_b_list.append(probs[0, token_ids_b].item())\n", + " prob_c_list.append(probs[0, token_ids_c].item())\n", + " prob_d_list.append(probs[0, token_ids_d].item())\n", + "df['A'] = prob_a_list\n", + "df['B'] = prob_b_list\n", + "df['C'] = prob_c_list\n", + "df['D'] = prob_d_list\"\"\"" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + }, + "id": "WFl4ieGwkF0G", + "outputId": "a21fab31-f1a0-4e85-fe38-bc4452c26023" + }, + "id": "WFl4ieGwkF0G", + "execution_count": 72, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'import torch\\nimport torch.nn.functional as F\\nfrom transformers import AutoTokenizer, AutoModelForCausalLM\\nresponses = []\\nprob_a_list = []\\nprob_b_list = []\\nprob_c_list = []\\nprob_d_list = []\\nbatch_size = 1\\nfor start in tqdm(range(0, len(df), batch_size)):\\n batch_texts = df[\\'Input\\'][start:start+batch_size].tolist()\\n for input_text in batch_texts:\\n prompt = f\"### INPUT : {input_text} Respond with just one letter based on these options : \"\\n message = [{\"role\": \"user\", \"content\": prompt}]\\n inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\\n with torch.no_grad():\\n outputs = model.generate(input_ids=inputs, max_new_tokens=1, use_cache=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True)\\n next_token_logits = outputs.scores[0]\\n probs = F.softmax(next_token_logits, dim=-1)\\n token_ids_a = tokenizer.encode(\\'A\\', add_special_tokens=False)[0]\\n token_ids_b = tokenizer.encode(\\'B\\', add_special_tokens=False)[0]\\n token_ids_c = tokenizer.encode(\\'C\\', add_special_tokens=False)[0]\\n token_ids_d = tokenizer.encode(\\'D\\', add_special_tokens=False)[0]\\n prob_a_list.append(probs[0, token_ids_a].item())\\n prob_b_list.append(probs[0, token_ids_b].item())\\n prob_c_list.append(probs[0, token_ids_c].item())\\n prob_d_list.append(probs[0, token_ids_d].item())\\ndf[\\'A\\'] = prob_a_list\\ndf[\\'B\\'] = prob_b_list\\ndf[\\'C\\'] = prob_c_list\\ndf[\\'D\\'] = prob_d_list'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 72 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 423 + }, + "id": "y9FMYJ1s2BZG", + "outputId": "a851d1e7-8dda-4f6f-8cb2-1f77d7387ea7" + }, + "id": "y9FMYJ1s2BZG", + "execution_count": 73, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Input Output \\\n", + "1262 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... B \n", + "1202 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1289 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1246 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "1358 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "... ... ... \n", + "2087 −4 + ( −3 )= ### A) −7 B) −1 C) 1 D) 7 ### M... A \n", + "8009 माणिक्य किस रंग का होता है? ### A) लाल B) काल... A \n", + "7772 इनमें से कौन सा शब्द क्रिया विशेषण है? ### A)... D \n", + "7585 बल = द्रव्यमान = क्या? ### A) वेग B) दूरी C) ... C \n", + "2983 एंटीमोनी का प्रतीक … है ### A) W B) Sb C) Fe ... B \n", + "\n", + " Sub-Domain Dataset tok A1 A2 A3 \\\n", + "1262 college_medicine MMLU 1917 0.516257 3.852689e-07 0.0 \n", + "1202 college_medicine MMLU 1894 0.954477 2.689888e-07 0.0 \n", + "1289 college_medicine MMLU 1892 0.424950 2.352290e-07 0.0 \n", + "1246 college_medicine MMLU 1831 0.225298 1.737284e-07 0.0 \n", + "1358 college_medicine MMLU 1830 0.021581 6.391137e-08 0.0 \n", + "... ... ... ... ... ... ... \n", + "2087 elementary_mathematics MMLU 32 0.905976 5.020378e-07 0.0 \n", + "8009 miscellaneous MMLU 32 0.967982 1.368823e-06 0.0 \n", + "7772 miscellaneous MMLU 31 0.071688 1.060347e-06 0.0 \n", + "7585 miscellaneous MMLU 31 0.090459 3.241587e-07 0.0 \n", + "2983 high_school_chemistry MMLU 29 0.027733 6.366120e-07 0.0 \n", + "\n", + " B1 B2 B3 C1 C2 C3 D1 \\\n", + "1262 0.354818 3.030374e-06 0.0 0.048019 2.790878e-08 0.0 0.069868 \n", + "1202 0.025436 2.689888e-07 0.0 0.012015 2.835121e-08 0.0 0.003442 \n", + "1289 0.121750 1.271636e-06 0.0 0.021157 5.947521e-08 0.0 0.424950 \n", + "1246 0.693966 3.455002e-07 0.0 0.030491 1.737284e-07 0.0 0.039151 \n", + "1358 0.917626 2.836049e-08 0.0 0.021581 1.831091e-08 0.0 0.031399 \n", + "... ... ... ... ... ... ... ... \n", + "2087 0.045106 2.249978e-06 0.0 0.018803 4.970848e-08 0.0 0.012923 \n", + "8009 0.013808 9.407772e-07 0.0 0.007391 8.750592e-08 0.0 0.004483 \n", + "7772 0.023274 1.527574e-07 0.0 0.018126 4.111410e-08 0.0 0.873344 \n", + "7585 0.022872 5.344473e-07 0.0 0.858254 8.196014e-08 0.0 0.017812 \n", + "2983 0.918378 1.625646e-06 0.0 0.004819 2.824948e-07 0.0 0.004819 \n", + "\n", + " D2 D3 \n", + "1262 2.621788e-08 0.0 \n", + "1202 2.053755e-09 0.0 \n", + "1289 2.639196e-08 0.0 \n", + "1246 1.339650e-08 0.0 \n", + "1358 2.054427e-09 0.0 \n", + "... ... ... \n", + "2087 2.499499e-08 0.0 \n", + "8009 3.219163e-08 0.0 \n", + "7772 1.189676e-07 0.0 \n", + "7585 1.192513e-07 0.0 \n", + "2983 7.603246e-08 0.0 \n", + "\n", + "[14042 rows x 17 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InputOutputSub-DomainDatasettokA1A2A3B1B2B3C1C2C3D1D2D3
1262सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Bcollege_medicineMMLU19170.5162573.852689e-070.00.3548183.030374e-060.00.0480192.790878e-080.00.0698682.621788e-080.0
1202सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU18940.9544772.689888e-070.00.0254362.689888e-070.00.0120152.835121e-080.00.0034422.053755e-090.0
1289सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU18920.4249502.352290e-070.00.1217501.271636e-060.00.0211575.947521e-080.00.4249502.639196e-080.0
1246सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU18310.2252981.737284e-070.00.6939663.455002e-070.00.0304911.737284e-070.00.0391511.339650e-080.0
1358सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU18300.0215816.391137e-080.00.9176262.836049e-080.00.0215811.831091e-080.00.0313992.054427e-090.0
......................................................
2087−4 + ( −3 )= ### A) −7 B) −1 C) 1 D) 7 ### M...Aelementary_mathematicsMMLU320.9059765.020378e-070.00.0451062.249978e-060.00.0188034.970848e-080.00.0129232.499499e-080.0
8009माणिक्य किस रंग का होता है? ### A) लाल B) काल...AmiscellaneousMMLU320.9679821.368823e-060.00.0138089.407772e-070.00.0073918.750592e-080.00.0044833.219163e-080.0
7772इनमें से कौन सा शब्द क्रिया विशेषण है? ### A)...DmiscellaneousMMLU310.0716881.060347e-060.00.0232741.527574e-070.00.0181264.111410e-080.00.8733441.189676e-070.0
7585बल = द्रव्यमान = क्या? ### A) वेग B) दूरी C) ...CmiscellaneousMMLU310.0904593.241587e-070.00.0228725.344473e-070.00.8582548.196014e-080.00.0178121.192513e-070.0
2983एंटीमोनी का प्रतीक … है ### A) W B) Sb C) Fe ...Bhigh_school_chemistryMMLU290.0277336.366120e-070.00.9183781.625646e-060.00.0048192.824948e-070.00.0048197.603246e-080.0
\n", + "

14042 rows × 17 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 14042,\n \"fields\": [\n {\n \"column\": \"Input\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 13981,\n \"samples\": [\n \"\\u0928\\u093f\\u092e\\u094d\\u0928\\u0932\\u093f\\u0916\\u093f\\u0924 \\u092e\\u0947\\u0902 \\u0938\\u0947 \\u0915\\u093f\\u0938 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925 \\u0915\\u0940 \\u0906\\u0923\\u094d\\u0935\\u093f\\u0915 \\u0938\\u0902\\u0930\\u091a\\u0928\\u093e \\u0905\\u0938\\u092e\\u092e\\u093f\\u0924 \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948? ### A) SF4 B) PCl5 C) BF3 D) CO2 ### MCQ ### \",\n \"\\u090f\\u0915\\u094d\\u0935\\u093f\\u0928\\u093e\\u0938 \\u0915\\u093e \\u0928\\u0948\\u0924\\u093f\\u0915 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924 \\u092a\\u094d\\u0930\\u093e\\u0915\\u0943\\u0924\\u093f\\u0915 \\u0915\\u093e\\u0928\\u0942\\u0928 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924 ### A) \\u092a\\u0930\\u093f\\u0923\\u093e\\u092e\\u0935\\u093e\\u0926\\u0964 B) \\u0915\\u093e \\u090f\\u0915 \\u0938\\u0902\\u0938\\u094d\\u0915\\u0930\\u0923 \\u0939\\u0948\\u0964 C) \\u0905\\u0927\\u093f\\u0915\\u093e\\u0930-\\u0906\\u0927\\u093e\\u0930\\u093f\\u0924 \\u0938\\u093f\\u0926\\u094d\\u0927\\u093e\\u0902\\u0924. D) \\u092a\\u0941\\u0923\\u094d\\u092f \\u0928\\u0948\\u0924\\u093f\\u0915\\u0924\\u093e\\u0964 ### MCQ ### \",\n \"\\u091c\\u093f\\u0938 \\u0926\\u0930 \\u092a\\u0930 \\u0936\\u0941\\u0926\\u094d\\u0927\\u093f\\u0915\\u0930\\u0923 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u092a\\u093e\\u0928\\u0940 \\u0915\\u0947 \\u091f\\u0948\\u0902\\u0915 \\u0938\\u0947 \\u0926\\u0942\\u0937\\u093f\\u0924 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925\\u094b\\u0902 \\u0915\\u094b \\u0939\\u091f\\u093e \\u0938\\u0915\\u0924\\u0940 \\u0939\\u0948, \\u0935\\u0939 \\u0936\\u0947\\u0937 \\u0926\\u0942\\u0937\\u093f\\u0924 \\u092a\\u0926\\u093e\\u0930\\u094d\\u0925\\u094b\\u0902 \\u0915\\u0940 \\u092e\\u093e\\u0924\\u094d\\u0930\\u093e \\u0915\\u0947 \\u0938\\u092e\\u093e\\u0928\\u0941\\u092a\\u093e\\u0924\\u0940 \\u0939\\u094b\\u0924\\u0940 \\u0939\\u0948. \\u0905\\u0917\\u0930 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u0915\\u0947 \\u092a\\u0939\\u0932\\u0947 \\u092e\\u093f\\u0928\\u091f \\u0915\\u0947 \\u0926\\u094c\\u0930\\u093e\\u0928 20% \\u0926\\u0942\\u0937\\u0915 \\u0915\\u094b \\u0939\\u091f\\u093e\\u092f\\u093e \\u091c\\u093e \\u0938\\u0915\\u0924\\u093e \\u0939\\u0948 \\u0914\\u0930 \\u092a\\u093e\\u0928\\u0940 \\u0915\\u094b \\u0938\\u0941\\u0930\\u0915\\u094d\\u0937\\u093f\\u0924 \\u092c\\u0928\\u093e\\u0928\\u0947 \\u0915\\u0947 \\u0932\\u093f\\u090f 98% \\u0915\\u094b \\u0939\\u091f\\u093e\\u092f\\u093e \\u091c\\u093e\\u0928\\u093e \\u091a\\u093e\\u0939\\u093f\\u090f, \\u0924\\u094b \\u0936\\u0941\\u0926\\u094d\\u0927\\u093f\\u0915\\u0930\\u0923 \\u092a\\u094d\\u0930\\u0915\\u094d\\u0930\\u093f\\u092f\\u093e \\u092e\\u0947\\u0902 \\u0932\\u0917\\u092d\\u0917 \\u0915\\u093f\\u0924\\u0928\\u093e \\u0938\\u092e\\u092f \\u0932\\u0917\\u0947\\u0917\\u093e? ### A) 2 \\u092e\\u093f\\u0928\\u091f B) 5 \\u092e\\u093f\\u0928\\u091f C) 18 \\u092e\\u093f\\u0928\\u091f D) 20 \\u092e\\u093f\\u0928\\u091f ### MCQ ### \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Output\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"A\",\n \"C\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sub-Domain\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 57,\n \"samples\": [\n \"college_medicine\",\n \"security_studies\",\n \"high_school_microeconomics\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Dataset\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"MMLU\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"tok\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 164,\n \"min\": 29,\n \"max\": 1917,\n \"num_unique_values\": 831,\n \"samples\": [\n 251\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"A1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.22160853381381335,\n \"min\": 0.0030818823724985123,\n \"max\": 0.9918692111968994,\n \"num_unique_values\": 13978,\n \"samples\": [\n 0.771519124507904\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"A2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.087638937111357e-06,\n \"min\": 8.247686561491108e-11,\n \"max\": 8.265939686680213e-05,\n \"num_unique_values\": 13950,\n \"samples\": [\n 1.7540160115459003e-06\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"A3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.4004740855577997e-09,\n \"min\": 0.0,\n \"max\": 1.9559506370114832e-07,\n \"num_unique_values\": 15,\n \"samples\": [\n 2.3831270290486373e-09\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2339628634975501,\n \"min\": 0.0009032916277647018,\n \"max\": 0.9854469299316406,\n \"num_unique_values\": 13978,\n \"samples\": [\n 0.10441376268863678\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8.363127910536849e-07,\n \"min\": 9.141065508699864e-12,\n \"max\": 3.5694938560482115e-05,\n \"num_unique_values\": 13967,\n \"samples\": [\n 6.030485337760183e-07\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"B3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.885658273906601e-09,\n \"min\": 0.0,\n \"max\": 1.421020670022699e-07,\n \"num_unique_values\": 15,\n \"samples\": [\n 1.4454397678775877e-09\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.23410864197271353,\n \"min\": 0.0004266847390681505,\n \"max\": 0.9852486252784729,\n \"num_unique_values\": 13977,\n \"samples\": [\n 0.02871343493461609\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5.467039964131735e-07,\n \"min\": 5.373755260218438e-12,\n \"max\": 2.0974444851162843e-05,\n \"num_unique_values\": 13960,\n \"samples\": [\n 6.385050710377982e-08\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"C3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.7235856749677566e-10,\n \"min\": 0.0,\n \"max\": 1.7090906467842615e-08,\n \"num_unique_values\": 15,\n \"samples\": [\n 7.268127211190745e-10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25372532892436744,\n \"min\": 9.415777458343655e-05,\n \"max\": 0.9850152730941772,\n \"num_unique_values\": 13979,\n \"samples\": [\n 0.016012368723750114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2580792115870143e-07,\n \"min\": 2.0280341642142652e-11,\n \"max\": 2.1851135443284875e-06,\n \"num_unique_values\": 13956,\n \"samples\": [\n 3.4553593764030666e-07\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"D3\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2897954282110254e-09,\n \"min\": 0.0,\n \"max\": 1.1066919824997967e-07,\n \"num_unique_values\": 15,\n \"samples\": [\n 4.995305835642228e-10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 73 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df['A'] = df['A1'] + df['A2'] + df['A3']\n", + "df['B'] = df['B1'] + df['B2'] + df['B3']\n", + "df['C'] = df['C1'] + df['C2'] + df['C3']\n", + "df['D'] = df['D1'] + df['D2'] + df['D3']" + ], + "metadata": { + "id": "z1sa1MNJ2Fo8" + }, + "id": "z1sa1MNJ2Fo8", + "execution_count": 74, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df['ANS'] = df[['A', 'B', 'C', 'D']].idxmax(axis=1)" + ], + "metadata": { + "id": "c1bm0UDqohyP" + }, + "id": "c1bm0UDqohyP", + "execution_count": 75, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df.head(10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 565 + }, + "id": "jHJ5DCl4JwXl", + "outputId": "8ad9e506-3302-4c30-89df-b83f74cc1954" + }, + "id": "jHJ5DCl4JwXl", + "execution_count": 76, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Input Output \\\n", + "1262 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... B \n", + "1202 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1289 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... A \n", + "1246 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "1358 सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब... D \n", + "5938 यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस... A \n", + "5874 यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस... B \n", + "12115 साल 1993 में, एक पशुपालक किसान को 20 एकड़ के स... A \n", + "10876 एक भूमि-विकास कंपनी के पास दक्षिणपश्चिम में 40... C \n", + "11923 साल 1993 में, एक ज़मींदार के पास एक अंगूर के ब... C \n", + "\n", + " Sub-Domain Dataset tok A1 A2 A3 \\\n", + "1262 college_medicine MMLU 1917 0.516257 3.852689e-07 0.0 \n", + "1202 college_medicine MMLU 1894 0.954477 2.689888e-07 0.0 \n", + "1289 college_medicine MMLU 1892 0.424950 2.352290e-07 0.0 \n", + "1246 college_medicine MMLU 1831 0.225298 1.737284e-07 0.0 \n", + "1358 college_medicine MMLU 1830 0.021581 6.391137e-08 0.0 \n", + "5938 high_school_world_history MMLU 1313 0.831706 1.644773e-06 0.0 \n", + "5874 high_school_world_history MMLU 1292 0.036370 8.827655e-07 0.0 \n", + "12115 professional_law MMLU 1279 0.387942 3.234532e-05 0.0 \n", + "10876 professional_law MMLU 1277 0.349803 1.543218e-05 0.0 \n", + "11923 professional_law MMLU 1266 0.189858 6.847983e-06 0.0 \n", + "\n", + " B1 B2 ... C2 C3 D1 D2 \\\n", + "1262 0.354818 3.030374e-06 ... 2.790878e-08 0.0 0.069868 2.621788e-08 \n", + "1202 0.025436 2.689888e-07 ... 2.835121e-08 0.0 0.003442 2.053755e-09 \n", + "1289 0.121750 1.271636e-06 ... 5.947521e-08 0.0 0.424950 2.639196e-08 \n", + "1246 0.693966 3.455002e-07 ... 1.737284e-07 0.0 0.039151 1.339650e-08 \n", + "1358 0.917626 2.836049e-08 ... 1.831091e-08 0.0 0.031399 2.054427e-09 \n", + "5938 0.041408 1.203342e-06 ... 5.287115e-08 0.0 0.009239 1.514784e-08 \n", + "5874 0.937991 5.699563e-07 ... 1.534017e-07 0.0 0.003383 1.340409e-08 \n", + "12115 0.266629 6.369172e-06 ... 2.655066e-06 0.0 0.067414 1.824798e-06 \n", + "10876 0.349803 3.234760e-06 ... 6.369620e-07 0.0 0.100220 1.039812e-07 \n", + "11923 0.354702 1.626539e-06 ... 2.854664e-06 0.0 0.167549 5.621167e-07 \n", + "\n", + " D3 A B C D ANS \n", + "1262 0.0 0.516257 0.354821 0.048019 0.069868 A \n", + "1202 0.0 0.954478 0.025436 0.012015 0.003442 A \n", + "1289 0.0 0.424950 0.121751 0.021157 0.424950 A \n", + "1246 0.0 0.225298 0.693966 0.030491 0.039151 B \n", + "1358 0.0 0.021581 0.917626 0.021581 0.031399 B \n", + "5938 0.0 0.831707 0.041409 0.112559 0.009239 A \n", + "5874 0.0 0.036371 0.937992 0.017180 0.003383 B \n", + "12115 0.0 0.387975 0.266635 0.266631 0.067416 A \n", + "10876 0.0 0.349819 0.349806 0.187237 0.100220 A \n", + "11923 0.0 0.189865 0.354704 0.276245 0.167550 B \n", + "\n", + "[10 rows x 22 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InputOutputSub-DomainDatasettokA1A2A3B1B2...C2C3D1D2D3ABCDANS
1262सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Bcollege_medicineMMLU19170.5162573.852689e-070.00.3548183.030374e-06...2.790878e-080.00.0698682.621788e-080.00.5162570.3548210.0480190.069868A
1202सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU18940.9544772.689888e-070.00.0254362.689888e-07...2.835121e-080.00.0034422.053755e-090.00.9544780.0254360.0120150.003442A
1289सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Acollege_medicineMMLU18920.4249502.352290e-070.00.1217501.271636e-06...5.947521e-080.00.4249502.639196e-080.00.4249500.1217510.0211570.424950A
1246सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU18310.2252981.737284e-070.00.6939663.455002e-07...1.737284e-070.00.0391511.339650e-080.00.2252980.6939660.0304910.039151B
1358सौना का उपयोग करना जिसे \"सौना स्नान\" या सौना ब...Dcollege_medicineMMLU18300.0215816.391137e-080.00.9176262.836049e-08...1.831091e-080.00.0313992.054427e-090.00.0215810.9176260.0215810.031399B
5938यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस...Ahigh_school_world_historyMMLU13130.8317061.644773e-060.00.0414081.203342e-06...5.287115e-080.00.0092391.514784e-080.00.8317070.0414090.1125590.009239A
5874यह प्रश्न निम्नलिखित जानकारी से संबंधित है।\\nस...Bhigh_school_world_historyMMLU12920.0363708.827655e-070.00.9379915.699563e-07...1.534017e-070.00.0033831.340409e-080.00.0363710.9379920.0171800.003383B
12115साल 1993 में, एक पशुपालक किसान को 20 एकड़ के स...Aprofessional_lawMMLU12790.3879423.234532e-050.00.2666296.369172e-06...2.655066e-060.00.0674141.824798e-060.00.3879750.2666350.2666310.067416A
10876एक भूमि-विकास कंपनी के पास दक्षिणपश्चिम में 40...Cprofessional_lawMMLU12770.3498031.543218e-050.00.3498033.234760e-06...6.369620e-070.00.1002201.039812e-070.00.3498190.3498060.1872370.100220A
11923साल 1993 में, एक ज़मींदार के पास एक अंगूर के ब...Cprofessional_lawMMLU12660.1898586.847983e-060.00.3547021.626539e-06...2.854664e-060.00.1675495.621167e-070.00.1898650.3547040.2762450.167550B
\n", + "

10 rows × 22 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df" + } + }, + "metadata": {}, + "execution_count": 76 + } + ] + }, + { + "cell_type": "code", + "source": [ + "accuracy = (df['Output'] == df['ANS']).mean()\n", + "print(f\"Accuracy: {accuracy:.4f}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7o2o5J9Kotv_", + "outputId": "03880633-be9d-4b60-ee54-71374dde9cb4" + }, + "id": "7o2o5J9Kotv_", + "execution_count": 77, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy: 0.5410\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df['ANS'].value_counts()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "BycMopmbIwlE", + "outputId": "25c60806-4f54-491b-9fe7-329049f59d14" + }, + "id": "BycMopmbIwlE", + "execution_count": 78, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "ANS\n", + "B 4555\n", + "A 3429\n", + "D 3033\n", + "C 3025\n", + "Name: count, dtype: int64" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count
ANS
B4555
A3429
D3033
C3025
\n", + "

" + ] + }, + "metadata": {}, + "execution_count": 78 + } + ] + }, + { + "cell_type": "code", + "source": [ + "for sd, group in df.groupby('Sub-Domain'):\n", + " accuracy = (group['Output'] == group['ANS']).mean()\n", + " print(f\"Sub-domain: {sd}, Accuracy: {accuracy:.4f}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29c_ZVaRo2O2", + "outputId": "f93c913e-e9b9-448a-eaf3-5cbc34863b14" + }, + "id": "29c_ZVaRo2O2", + "execution_count": 79, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sub-domain: abstract_algebra, Accuracy: 0.3900\n", + "Sub-domain: anatomy, Accuracy: 0.4963\n", + "Sub-domain: astronomy, Accuracy: 0.5658\n", + "Sub-domain: business_ethics, Accuracy: 0.5200\n", + "Sub-domain: clinical_knowledge, Accuracy: 0.5736\n", + "Sub-domain: college_biology, Accuracy: 0.6181\n", + "Sub-domain: college_chemistry, Accuracy: 0.4900\n", + "Sub-domain: college_computer_science, Accuracy: 0.4800\n", + "Sub-domain: college_mathematics, Accuracy: 0.3200\n", + "Sub-domain: college_medicine, Accuracy: 0.5838\n", + "Sub-domain: college_physics, Accuracy: 0.4314\n", + "Sub-domain: computer_security, Accuracy: 0.6300\n", + "Sub-domain: conceptual_physics, Accuracy: 0.6170\n", + "Sub-domain: econometrics, Accuracy: 0.4035\n", + "Sub-domain: electrical_engineering, Accuracy: 0.5793\n", + "Sub-domain: elementary_mathematics, Accuracy: 0.4947\n", + "Sub-domain: formal_logic, Accuracy: 0.4286\n", + "Sub-domain: global_facts, Accuracy: 0.4100\n", + "Sub-domain: high_school_biology, Accuracy: 0.7258\n", + "Sub-domain: high_school_chemistry, Accuracy: 0.5419\n", + "Sub-domain: high_school_computer_science, Accuracy: 0.7300\n", + "Sub-domain: high_school_european_history, Accuracy: 0.6909\n", + "Sub-domain: high_school_geography, Accuracy: 0.6515\n", + "Sub-domain: high_school_government_and_politics, Accuracy: 0.6321\n", + "Sub-domain: high_school_macroeconomics, Accuracy: 0.5487\n", + "Sub-domain: high_school_mathematics, Accuracy: 0.3519\n", + "Sub-domain: high_school_microeconomics, Accuracy: 0.5798\n", + "Sub-domain: high_school_physics, Accuracy: 0.4040\n", + "Sub-domain: high_school_psychology, Accuracy: 0.7064\n", + "Sub-domain: high_school_statistics, Accuracy: 0.5185\n", + "Sub-domain: high_school_us_history, Accuracy: 0.6569\n", + "Sub-domain: high_school_world_history, Accuracy: 0.7764\n", + "Sub-domain: human_aging, Accuracy: 0.5561\n", + "Sub-domain: human_sexuality, Accuracy: 0.5725\n", + "Sub-domain: international_law, Accuracy: 0.6364\n", + "Sub-domain: jurisprudence, Accuracy: 0.6019\n", + "Sub-domain: logical_fallacies, Accuracy: 0.4294\n", + "Sub-domain: machine_learning, Accuracy: 0.3839\n", + "Sub-domain: management, Accuracy: 0.6117\n", + "Sub-domain: marketing, Accuracy: 0.8205\n", + "Sub-domain: medical_genetics, Accuracy: 0.5700\n", + "Sub-domain: miscellaneous, Accuracy: 0.6616\n", + "Sub-domain: moral_disputes, Accuracy: 0.5954\n", + "Sub-domain: moral_scenarios, Accuracy: 0.2547\n", + "Sub-domain: nutrition, Accuracy: 0.6275\n", + "Sub-domain: philosophy, Accuracy: 0.5627\n", + "Sub-domain: prehistory, Accuracy: 0.5679\n", + "Sub-domain: professional_accounting, Accuracy: 0.4610\n", + "Sub-domain: professional_law, Accuracy: 0.4192\n", + "Sub-domain: professional_medicine, Accuracy: 0.5184\n", + "Sub-domain: professional_psychology, Accuracy: 0.5327\n", + "Sub-domain: public_relations, Accuracy: 0.6636\n", + "Sub-domain: security_studies, Accuracy: 0.6490\n", + "Sub-domain: sociology, Accuracy: 0.6716\n", + "Sub-domain: us_foreign_policy, Accuracy: 0.5900\n", + "Sub-domain: virology, Accuracy: 0.4337\n", + "Sub-domain: world_religions, Accuracy: 0.6725\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"CLICK CTRl+S and wait for 2 sec\")\n", + "name = name.split('/')[-1]\n", + "name = name + \"-MMLU-H.ipynb\"\n", + "print(\"NOTEBOOK NAME SHOULD BE : \", name)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "m7vhP5Obk-sw", + "outputId": "8696f068-dba7-4b6f-c836-d2f7b49494ba" + }, + "id": "m7vhP5Obk-sw", + "execution_count": 80, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CLICK CTRl+S and wait for 2 sec\n", + "NOTEBOOK NAME SHOULD BE : HINDI-GEMMA-9B-B10-MMLU-H.ipynb\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "c_5zVBU12crT" + }, + "id": "c_5zVBU12crT", + "execution_count": 80, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + }, + "colab": { + "provenance": [], + "machine_shape": "hm", + "gpuType": "A100" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "e45f01941b984da59c8215e5d0fdbc33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [], + "layout": "IPY_MODEL_e8026b1bf4f948f7a67ab753bdc16565" + } + }, + "c1af9f9962f14181b56af5c6340f41ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a798dd18fca4140ae6d03085ae83629", + "placeholder": "​", + "style": "IPY_MODEL_5f2179c1a6314af88adca5856ed397f5", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "3381a25afa1a4ac4b65c531feb5f9407": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_907d0f51a73748e9a7cda50e7bb58c35", + "placeholder": "​", + "style": "IPY_MODEL_78736d1cec3f4bcc9d2a59672ee4bb40", + "value": "" + } + }, + "ade207c5bb44485dae09a5a3fc414bfb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_84e2f6d79bb04e388fd6053fc0207efd", + "style": "IPY_MODEL_7fa40ed7a38b4924902dfe6c1ff952f8", + "value": true + } + }, + "96f8ae744112403aa1c2415772cf5faf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_904403c8a1334588bee0c629a8518a5d", + "style": "IPY_MODEL_da9cc5f3770547759a5366c3410bf23b", + "tooltip": "" + } + }, + "1f51d19ea1d84b0aa8d7635e873eb8fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8bebf7a327364c05b04aae6d5def58ff", + "placeholder": "​", + "style": "IPY_MODEL_91105ed7122b4dfd9619f181ba8a838a", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
" + } + }, + "e8026b1bf4f948f7a67ab753bdc16565": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "9a798dd18fca4140ae6d03085ae83629": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f2179c1a6314af88adca5856ed397f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "907d0f51a73748e9a7cda50e7bb58c35": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78736d1cec3f4bcc9d2a59672ee4bb40": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "84e2f6d79bb04e388fd6053fc0207efd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fa40ed7a38b4924902dfe6c1ff952f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "904403c8a1334588bee0c629a8518a5d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da9cc5f3770547759a5366c3410bf23b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "8bebf7a327364c05b04aae6d5def58ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91105ed7122b4dfd9619f181ba8a838a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1511905fb6244d319a5d571c6f0d718d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1d5b347418e473793ef7496bc9a6e21", + "placeholder": "​", + "style": "IPY_MODEL_45463d2f2148403c9ce4a8d743ba2925", + "value": "Connecting..." + } + }, + "a1d5b347418e473793ef7496bc9a6e21": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45463d2f2148403c9ce4a8d743ba2925": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "174f06d96a414316a2312c09f34f712e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c08ac93850bb4e0da4e615d5a2c54ea0", + "IPY_MODEL_64bfcdc6238144659413b70f23ecd225", + "IPY_MODEL_450ee7e1025a4a72b6d0829c3a2b3f63" + ], + "layout": "IPY_MODEL_cc936c061dc24a378944f0789480f71e" + } + }, + "c08ac93850bb4e0da4e615d5a2c54ea0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af075b28873e440baeca0d3bd1326568", + "placeholder": "​", + "style": "IPY_MODEL_d7e0bbd0c277432d9f401168e157ad8d", + "value": "model.safetensors.index.json: 100%" + } + }, + "64bfcdc6238144659413b70f23ecd225": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20577fc6bce047979e0a00436ccbd4b5", + "max": 39072, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d1200471c634cb88c35131fb6bb8138", + "value": 39072 + } + }, + "450ee7e1025a4a72b6d0829c3a2b3f63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f6710c96595c40d7868f341f2c12fc83", + "placeholder": "​", + "style": "IPY_MODEL_bd3c8bd7b391470e8a4f73f9ffa7b3a4", + "value": " 39.1k/39.1k [00:00<00:00, 3.01MB/s]" + } + }, + "cc936c061dc24a378944f0789480f71e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af075b28873e440baeca0d3bd1326568": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7e0bbd0c277432d9f401168e157ad8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20577fc6bce047979e0a00436ccbd4b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d1200471c634cb88c35131fb6bb8138": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f6710c96595c40d7868f341f2c12fc83": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd3c8bd7b391470e8a4f73f9ffa7b3a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "524de86a695f480eb439a8fd86b21864": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b3f49b308184d2c8ebbf9e147412404", + "IPY_MODEL_53f83486f9d745b0a624b05d07ba3d8d", + "IPY_MODEL_7311811bb4bb46908a296fca1ede115b" + ], + "layout": "IPY_MODEL_204838c48ca7472e9ebf7dbf33634eb0" + } + }, + "6b3f49b308184d2c8ebbf9e147412404": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4325dadbd09b4dc29da3c0a85bc5fd7f", + "placeholder": "​", + "style": "IPY_MODEL_05ca7a0b6350455d89a717ddc2e63a85", + "value": "Downloading shards: 100%" + } + }, + "53f83486f9d745b0a624b05d07ba3d8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c090b7a2afac4fcb984b01087222a3f9", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3833525d061a4a0e9a7a79611122efc0", + "value": 4 + } + }, + "7311811bb4bb46908a296fca1ede115b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_84c0a4007be04b61bafcef174ec69371", + "placeholder": "​", + "style": "IPY_MODEL_772ee62e61b74b2d9fcb61c7c2d286f7", + "value": " 4/4 [07:19<00:00, 105.73s/it]" + } + }, + "204838c48ca7472e9ebf7dbf33634eb0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4325dadbd09b4dc29da3c0a85bc5fd7f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05ca7a0b6350455d89a717ddc2e63a85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c090b7a2afac4fcb984b01087222a3f9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3833525d061a4a0e9a7a79611122efc0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "84c0a4007be04b61bafcef174ec69371": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "772ee62e61b74b2d9fcb61c7c2d286f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68c533ea901a4c28920b1112b93de258": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c188d0af85324681b5064cdac2ba2f31", + "IPY_MODEL_b85ae7b8519640c0a7c9583ed2a8b23f", + "IPY_MODEL_df07a8783e864ffd8b772cff27fb5b28" + ], + "layout": "IPY_MODEL_79a1cb526f4f4a11a940d78b6f3097c4" + } + }, + "c188d0af85324681b5064cdac2ba2f31": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a93a629d55334109adaf15782e9065cf", + "placeholder": "​", + "style": "IPY_MODEL_06b4cbd683da47c8a50afe0065a51151", + "value": "model-00001-of-00004.safetensors: 100%" + } + }, + "b85ae7b8519640c0a7c9583ed2a8b23f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_472bd364bafb4867a8f9e9f899cbc25e", + "max": 4903351912, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e887923a42a942beae899f70429fe491", + "value": 4903351912 + } + }, + "df07a8783e864ffd8b772cff27fb5b28": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3cc7b6773e0543bc836e4595d2ed7bfe", + "placeholder": "​", + "style": "IPY_MODEL_25be37999c2545ed8c96a2ce60742cee", + "value": " 4.90G/4.90G [01:56<00:00, 41.9MB/s]" + } + }, + "79a1cb526f4f4a11a940d78b6f3097c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a93a629d55334109adaf15782e9065cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06b4cbd683da47c8a50afe0065a51151": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "472bd364bafb4867a8f9e9f899cbc25e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e887923a42a942beae899f70429fe491": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cc7b6773e0543bc836e4595d2ed7bfe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25be37999c2545ed8c96a2ce60742cee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a372bd6011b84c45a97e148bdc9695fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7cc3464f772b4dacb91f8ce218d342c3", + "IPY_MODEL_52804bc114fe46a0b40d553d42a38244", + "IPY_MODEL_c76fa847be0746b4b4ee90ab451fc7f6" + ], + "layout": "IPY_MODEL_a20ccdaa397c4f348b96777cd7f11960" + } + }, + "7cc3464f772b4dacb91f8ce218d342c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b3a85edad614340ba341d2c072d649a", + "placeholder": "​", + "style": "IPY_MODEL_7f69070804d742cdaae1d2c66563e1ed", + "value": "model-00002-of-00004.safetensors: 100%" + } + }, + "52804bc114fe46a0b40d553d42a38244": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8bf0d5ca3a2c40b6a6d78f419acf5e5a", + "max": 4947570872, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4403117d959742f6ae9c6efe6f77ed4f", + "value": 4947570872 + } + }, + "c76fa847be0746b4b4ee90ab451fc7f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ebd10dc63c34f4ba578409f24149e94", + "placeholder": "​", + "style": "IPY_MODEL_6edb9d21018a492ba8fb3ea85372946f", + "value": " 4.95G/4.95G [01:57<00:00, 42.6MB/s]" + } + }, + "a20ccdaa397c4f348b96777cd7f11960": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b3a85edad614340ba341d2c072d649a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f69070804d742cdaae1d2c66563e1ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8bf0d5ca3a2c40b6a6d78f419acf5e5a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4403117d959742f6ae9c6efe6f77ed4f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ebd10dc63c34f4ba578409f24149e94": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6edb9d21018a492ba8fb3ea85372946f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bc89f3e60fa84bf691e9730faa488954": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b4cb31a854374e32bf3f4341c5d3e284", + "IPY_MODEL_b247dbbce0654ae8a58aa392c239c39d", + "IPY_MODEL_9d6f6ae615aa4fa3a5aed82f7fe1cf8d" + ], + "layout": "IPY_MODEL_e029ea34ff034b32b76f0a844abb097e" + } + }, + "b4cb31a854374e32bf3f4341c5d3e284": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e8f6511b33bc4013834552ec36806919", + "placeholder": "​", + "style": "IPY_MODEL_ae11e1bb9b54410290b8274857a8348d", + "value": "model-00003-of-00004.safetensors: 100%" + } + }, + "b247dbbce0654ae8a58aa392c239c39d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ce22946f266497c8a7b96b877a6acfb", + "max": 4962221464, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3719bb61e1a3492eb990401878947bac", + "value": 4962221464 + } + }, + "9d6f6ae615aa4fa3a5aed82f7fe1cf8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c43c34123f644b4682a47526d11d88e2", + "placeholder": "​", + "style": "IPY_MODEL_68a99f03b6fc4b92971f82d03f7623f0", + "value": " 4.96G/4.96G [01:58<00:00, 42.1MB/s]" + } + }, + "e029ea34ff034b32b76f0a844abb097e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8f6511b33bc4013834552ec36806919": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae11e1bb9b54410290b8274857a8348d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ce22946f266497c8a7b96b877a6acfb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3719bb61e1a3492eb990401878947bac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c43c34123f644b4682a47526d11d88e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68a99f03b6fc4b92971f82d03f7623f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "77af006fd0f74080a44923315a08acb2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d3607cb4d41345208edc57807b912e09", + "IPY_MODEL_b514a8e63d6d47da8ac3627decef89cc", + "IPY_MODEL_2223c3227ba74fc695a3d32f04b829ec" + ], + "layout": "IPY_MODEL_a849ad5387694694b20a2f703a86bf0d" + } + }, + "d3607cb4d41345208edc57807b912e09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f011cc7c7c37423b8e937c6de0481de6", + "placeholder": "​", + "style": "IPY_MODEL_2ec8db6289e7471c8a71a0ff87b6f8a2", + "value": "model-00004-of-00004.safetensors: 100%" + } + }, + "b514a8e63d6d47da8ac3627decef89cc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88d34e1c0cb5447e983b11fb085eb97a", + "max": 3670322200, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_43c4b99c0d374f13b89e6eee5af8f482", + "value": 3670322200 + } + }, + "2223c3227ba74fc695a3d32f04b829ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81f63c0ad2d64e1c86da9f4e763946dc", + "placeholder": "​", + "style": "IPY_MODEL_9f69f8bea863455b997b0685c9028c3f", + "value": " 3.67G/3.67G [01:26<00:00, 42.1MB/s]" + } + }, + "a849ad5387694694b20a2f703a86bf0d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f011cc7c7c37423b8e937c6de0481de6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ec8db6289e7471c8a71a0ff87b6f8a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "88d34e1c0cb5447e983b11fb085eb97a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43c4b99c0d374f13b89e6eee5af8f482": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "81f63c0ad2d64e1c86da9f4e763946dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f69f8bea863455b997b0685c9028c3f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "915431f1bd894b86a5a1dea133f7cb3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe522ed5ca7c45a48e3e1c046db6bdba", + "IPY_MODEL_37702074c4254f6eb6dc9df61cbb858e", + "IPY_MODEL_8b16b87e7c6c4abd82257f56b8972eb3" + ], + "layout": "IPY_MODEL_6f819b18d65541cfab2be05a7eb8b274" + } + }, + "fe522ed5ca7c45a48e3e1c046db6bdba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46ab79f0e8d4499792faa9876f9b3ff0", + "placeholder": "​", + "style": "IPY_MODEL_0c549289db31454f9671a835cc45f16e", + "value": "Loading checkpoint shards: 100%" + } + }, + "37702074c4254f6eb6dc9df61cbb858e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_18ae43ac56a441b1a98f37569fd6d177", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_97ec184119fd4af194f16b7a8ecfa053", + "value": 4 + } + }, + "8b16b87e7c6c4abd82257f56b8972eb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14a438bd0f324e4a91866162cc86c85c", + "placeholder": "​", + "style": "IPY_MODEL_d01d21b04daa491eb39a81ee26a7fc33", + "value": " 4/4 [00:07<00:00,  1.82s/it]" + } + }, + "6f819b18d65541cfab2be05a7eb8b274": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46ab79f0e8d4499792faa9876f9b3ff0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c549289db31454f9671a835cc45f16e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "18ae43ac56a441b1a98f37569fd6d177": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97ec184119fd4af194f16b7a8ecfa053": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "14a438bd0f324e4a91866162cc86c85c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d01d21b04daa491eb39a81ee26a7fc33": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c85e7e8de6864d7398797ac306cfef98": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8aed7f470993413aae78afc0a74b058b", + "IPY_MODEL_b60257c0af80409ba7bc7c550e5caa80", + "IPY_MODEL_5a1cc2a794654af1bce950fcd542fd15" + ], + "layout": "IPY_MODEL_3fcf65bf29d1449d88cebbdafea206e9" + } + }, + "8aed7f470993413aae78afc0a74b058b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7cc17c2030ec4f41ac9e965ff11b14dd", + "placeholder": "​", + "style": "IPY_MODEL_a2f2db68c9194afca304e70b557b0e8e", + "value": "generation_config.json: 100%" + } + }, + "b60257c0af80409ba7bc7c550e5caa80": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9570c5fefa01420e9bcc38e7385c6649", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_63ad5215157d4a8fb0ada9cb86c94f03", + "value": 190 + } + }, + "5a1cc2a794654af1bce950fcd542fd15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ce0411a86eb46ac974d0da2f7d0c474", + "placeholder": "​", + "style": "IPY_MODEL_35cd05d06f4a4bc59437d65b7877a241", + "value": " 190/190 [00:00<00:00, 19.1kB/s]" + } + }, + "3fcf65bf29d1449d88cebbdafea206e9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7cc17c2030ec4f41ac9e965ff11b14dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a2f2db68c9194afca304e70b557b0e8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9570c5fefa01420e9bcc38e7385c6649": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63ad5215157d4a8fb0ada9cb86c94f03": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2ce0411a86eb46ac974d0da2f7d0c474": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35cd05d06f4a4bc59437d65b7877a241": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "56026e46c26c44e5804e9ffdec4a9ccb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_25efb39f5ea142f084a8696b43fa16cd", + "IPY_MODEL_1f6b6f1528534b4e80e5f00ad0c5c0b7", + "IPY_MODEL_a7a08996e9c64811b96c5cba473a614b" + ], + "layout": "IPY_MODEL_a363103e45e94eb0bee2046720ba2130" + } + }, + "25efb39f5ea142f084a8696b43fa16cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a72200c88c74eb7b1051e2b9e13824d", + "placeholder": "​", + "style": "IPY_MODEL_82023240560045c1bf1f7dbe870386cf", + "value": "tokenizer_config.json: 100%" + } + }, + "1f6b6f1528534b4e80e5f00ad0c5c0b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aaab672ca574454f95d0efbed97074d2", + "max": 47025, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6408fe4dd2f24a2ba155aa801ee4d9be", + "value": 47025 + } + }, + "a7a08996e9c64811b96c5cba473a614b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8019199ec0ce4d878dd6e577e79813dc", + "placeholder": "​", + "style": "IPY_MODEL_113dc77b9b7d459ea9d7541ec2af46fd", + "value": " 47.0k/47.0k [00:00<00:00, 4.34MB/s]" + } + }, + "a363103e45e94eb0bee2046720ba2130": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a72200c88c74eb7b1051e2b9e13824d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82023240560045c1bf1f7dbe870386cf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aaab672ca574454f95d0efbed97074d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6408fe4dd2f24a2ba155aa801ee4d9be": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8019199ec0ce4d878dd6e577e79813dc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "113dc77b9b7d459ea9d7541ec2af46fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2c4d26f10efd426f8d023c0560a77841": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bb85706ab5df455f8e73d5fe7c623ca3", + "IPY_MODEL_d9f5bc779bfd42dfa03c6a32031255c1", + "IPY_MODEL_609d90e62e6743e8b006a975d3383715" + ], + "layout": "IPY_MODEL_a598b48e927f464e969ad419e46ca555" + } + }, + "bb85706ab5df455f8e73d5fe7c623ca3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_679eac02c4244ec7810603c70ddda5a4", + "placeholder": "​", + "style": "IPY_MODEL_ce458d53331c4a93892cfc23e0fc115a", + "value": "tokenizer.model: 100%" + } + }, + "d9f5bc779bfd42dfa03c6a32031255c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_048dfd2a045c49439c79734ac42e298f", + "max": 4241003, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d7425e149bbb409080cd7affb8f31652", + "value": 4241003 + } + }, + "609d90e62e6743e8b006a975d3383715": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea175e791098454cab0206e0023d9138", + "placeholder": "​", + "style": "IPY_MODEL_0f7fbd8af9474cb6a00fee4c34d57f3e", + "value": " 4.24M/4.24M [00:00<00:00, 37.8MB/s]" + } + }, + "a598b48e927f464e969ad419e46ca555": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "679eac02c4244ec7810603c70ddda5a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce458d53331c4a93892cfc23e0fc115a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "048dfd2a045c49439c79734ac42e298f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7425e149bbb409080cd7affb8f31652": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea175e791098454cab0206e0023d9138": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f7fbd8af9474cb6a00fee4c34d57f3e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9b7e202889914708b64ca8fd7fb447a2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0083586e15fa407d822d41a7c11458a4", + "IPY_MODEL_b0f38f8eef314a1ca445ca3615b3fe8b", + "IPY_MODEL_5955f0ecb8824d78ad43a10695be1cc5" + ], + "layout": "IPY_MODEL_825c28f81a0548d8a33015be789154bf" + } + }, + "0083586e15fa407d822d41a7c11458a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8659f490215949499279c79a88f2f5f6", + "placeholder": "​", + "style": "IPY_MODEL_443f138f57b7475e86abb0440c7641f1", + "value": "special_tokens_map.json: 100%" + } + }, + "b0f38f8eef314a1ca445ca3615b3fe8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_134d957583334445a3beed87ed4e73d0", + "max": 636, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_022c835c4fdd4e70b4b5744139a34efd", + "value": 636 + } + }, + "5955f0ecb8824d78ad43a10695be1cc5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_619cfc09f622408e9cca7a75ae6d6932", + "placeholder": "​", + "style": "IPY_MODEL_10a0663b7fa54385a28fe38ba2dee207", + "value": " 636/636 [00:00<00:00, 51.5kB/s]" + } + }, + "825c28f81a0548d8a33015be789154bf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8659f490215949499279c79a88f2f5f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "443f138f57b7475e86abb0440c7641f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "134d957583334445a3beed87ed4e73d0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "022c835c4fdd4e70b4b5744139a34efd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "619cfc09f622408e9cca7a75ae6d6932": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10a0663b7fa54385a28fe38ba2dee207": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5deb72b8d7ca4b3da2bb497ca5e96b31": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af97bf4c98d64bea9b1a32bde7295221", + "IPY_MODEL_04dba582b14d493583388ac07befa60c", + "IPY_MODEL_a40ea53e44144e3cb470d49d81d15727" + ], + "layout": "IPY_MODEL_33436687b7794410aa29d75217e23dfe" + } + }, + "af97bf4c98d64bea9b1a32bde7295221": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb4d7013c5a94b2ab7e277011529a0f2", + "placeholder": "​", + "style": "IPY_MODEL_4427e78be36242bb8dddd20bb7034922", + "value": "tokenizer.json: 100%" + } + }, + "04dba582b14d493583388ac07befa60c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92d6ac7839ba423b8c8c8e320b746089", + "max": 34362873, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_54a1a6c0c9f04093bbc6119323d76055", + "value": 34362873 + } + }, + "a40ea53e44144e3cb470d49d81d15727": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6bcc3429e224490693bf89550210ceb9", + "placeholder": "​", + "style": "IPY_MODEL_0cb45c3824864477ac81407f43abf97f", + "value": " 34.4M/34.4M [00:00<00:00, 42.2MB/s]" + } + }, + "33436687b7794410aa29d75217e23dfe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb4d7013c5a94b2ab7e277011529a0f2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4427e78be36242bb8dddd20bb7034922": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92d6ac7839ba423b8c8c8e320b746089": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54a1a6c0c9f04093bbc6119323d76055": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bcc3429e224490693bf89550210ceb9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0cb45c3824864477ac81407f43abf97f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file