File size: 2,540 Bytes
70f5757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: codet5-small-Generate-docstrings-for-Python-bs-32
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# codet5-small-Generate-docstrings-for-Python-bs-32

This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1105
- Rouge1: 0.3307
- Rouge2: 0.16
- Rougel: 0.297
- Rougelsum: 0.3149
- Gen Len: 16.7441

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.7701        | 1.0   | 4472  | 2.3322          | 0.3225 | 0.1525 | 0.2894 | 0.3067    | 16.3153 |
| 2.4907        | 2.0   | 8944  | 2.2464          | 0.328  | 0.1555 | 0.293  | 0.3119    | 17.0097 |
| 2.405         | 3.0   | 13416 | 2.2004          | 0.3267 | 0.1562 | 0.2934 | 0.311     | 16.4531 |
| 2.3512        | 4.0   | 17888 | 2.1696          | 0.3292 | 0.1571 | 0.2944 | 0.3134    | 17.3872 |
| 2.3144        | 5.0   | 22360 | 2.1503          | 0.3293 | 0.1586 | 0.2954 | 0.3137    | 16.932  |
| 2.2862        | 6.0   | 26832 | 2.1355          | 0.3307 | 0.1588 | 0.2962 | 0.3149    | 17.0269 |
| 2.2666        | 7.0   | 31304 | 2.1246          | 0.33   | 0.1594 | 0.2962 | 0.3144    | 16.7064 |
| 2.2514        | 8.0   | 35776 | 2.1163          | 0.3305 | 0.1595 | 0.2968 | 0.3145    | 16.4765 |
| 2.2401        | 9.0   | 40248 | 2.1120          | 0.3305 | 0.1595 | 0.2967 | 0.3147    | 16.763  |
| 2.2333        | 10.0  | 44720 | 2.1105          | 0.3307 | 0.16   | 0.297  | 0.3149    | 16.7441 |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4.dev0
- Tokenizers 0.13.3