--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-bs-8-fp16-false results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan-bs-8-fp16-false This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7162 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0985 | 1.0 | 113 | 1.9610 | 0.47 | | 1.4194 | 2.0 | 226 | 1.3265 | 0.69 | | 1.0868 | 3.0 | 339 | 0.9856 | 0.72 | | 0.9134 | 4.0 | 452 | 0.8709 | 0.74 | | 0.6349 | 5.0 | 565 | 0.7497 | 0.79 | | 0.3755 | 6.0 | 678 | 0.7343 | 0.78 | | 0.4007 | 7.0 | 791 | 0.5346 | 0.84 | | 0.1607 | 8.0 | 904 | 0.5604 | 0.86 | | 0.1802 | 9.0 | 1017 | 0.5005 | 0.89 | | 0.0319 | 10.0 | 1130 | 0.6562 | 0.84 | | 0.0158 | 11.0 | 1243 | 0.6639 | 0.84 | | 0.1126 | 12.0 | 1356 | 0.6965 | 0.85 | | 0.0095 | 13.0 | 1469 | 0.6919 | 0.84 | | 0.0083 | 14.0 | 1582 | 0.7089 | 0.85 | | 0.0088 | 15.0 | 1695 | 0.7162 | 0.84 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3