DrishtiSharma commited on
Commit
738b3ab
·
1 Parent(s): 78d5eae

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: GroNLP/hateBERT
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: hateBERT-hate-offensive-normal-speech-lr-2e-05
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # hateBERT-hate-offensive-normal-speech-lr-2e-05
16
+
17
+ This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0207
20
+ - Accuracy: 0.9902
21
+ - Weighted f1: 0.9902
22
+ - Weighted recall: 0.9902
23
+ - Weighted precision: 0.9904
24
+ - Micro f1: 0.9902
25
+ - Micro recall: 0.9902
26
+ - Micro precision: 0.9902
27
+ - Macro f1: 0.9901
28
+ - Macro recall: 0.9903
29
+ - Macro precision: 0.9899
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 16
50
+ - eval_batch_size: 16
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 5
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:|
60
+ | 0.6155 | 1.0 | 153 | 0.0889 | 0.9805 | 0.9805 | 0.9805 | 0.9806 | 0.9805 | 0.9805 | 0.9805 | 0.9801 | 0.9811 | 0.9793 |
61
+ | 0.0665 | 2.0 | 306 | 0.0368 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9864 | 0.9866 | 0.9864 |
62
+ | 0.0235 | 3.0 | 459 | 0.0264 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 |
63
+ | 0.0182 | 4.0 | 612 | 0.0414 | 0.9870 | 0.9870 | 0.9870 | 0.9873 | 0.9870 | 0.9870 | 0.9870 | 0.9865 | 0.9869 | 0.9864 |
64
+ | 0.012 | 5.0 | 765 | 0.0207 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.34.0.dev0
70
+ - Pytorch 2.0.1+cu118
71
+ - Datasets 2.14.6.dev0
72
+ - Tokenizers 0.13.3