--- base_model: GroNLP/hateBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: hateBERT-hate-offensive-normal-speech-lr-2e-05 results: [] --- # hateBERT-hate-offensive-normal-speech-lr-2e-05 This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co/GroNLP/hateBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0207 - Accuracy: 0.9902 - Weighted f1: 0.9902 - Weighted recall: 0.9902 - Weighted precision: 0.9904 - Micro f1: 0.9902 - Micro recall: 0.9902 - Micro precision: 0.9902 - Macro f1: 0.9901 - Macro recall: 0.9903 - Macro precision: 0.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:| | 0.6155 | 1.0 | 153 | 0.0889 | 0.9805 | 0.9805 | 0.9805 | 0.9806 | 0.9805 | 0.9805 | 0.9805 | 0.9801 | 0.9811 | 0.9793 | | 0.0665 | 2.0 | 306 | 0.0368 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | 0.9864 | 0.9866 | 0.9864 | | 0.0235 | 3.0 | 459 | 0.0264 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 | | 0.0182 | 4.0 | 612 | 0.0414 | 0.9870 | 0.9870 | 0.9870 | 0.9873 | 0.9870 | 0.9870 | 0.9870 | 0.9865 | 0.9869 | 0.9864 | | 0.012 | 5.0 | 765 | 0.0207 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9901 | 0.9903 | 0.9899 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.6.dev0 - Tokenizers 0.13.3