DrishtiSharma
commited on
Commit
•
246d6b7
1
Parent(s):
2509b61
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-br-d2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-br-d2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1257
|
20 |
+
- Wer: 0.4631
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.00034
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 750
|
48 |
+
- num_epochs: 50
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 14.0379 | 0.68 | 100 | 5.6808 | 1.0 |
|
56 |
+
| 3.9145 | 1.35 | 200 | 3.1970 | 1.0 |
|
57 |
+
| 3.0293 | 2.03 | 300 | 2.9513 | 1.0 |
|
58 |
+
| 2.0927 | 2.7 | 400 | 1.4545 | 0.8887 |
|
59 |
+
| 1.1556 | 3.38 | 500 | 1.0966 | 0.7564 |
|
60 |
+
| 0.9628 | 4.05 | 600 | 0.9808 | 0.7364 |
|
61 |
+
| 0.7869 | 4.73 | 700 | 1.0488 | 0.7355 |
|
62 |
+
| 0.703 | 5.41 | 800 | 0.9500 | 0.6881 |
|
63 |
+
| 0.6657 | 6.08 | 900 | 0.9309 | 0.6259 |
|
64 |
+
| 0.5663 | 6.76 | 1000 | 0.9133 | 0.6357 |
|
65 |
+
| 0.496 | 7.43 | 1100 | 0.9890 | 0.6028 |
|
66 |
+
| 0.4748 | 8.11 | 1200 | 0.9469 | 0.5894 |
|
67 |
+
| 0.4135 | 8.78 | 1300 | 0.9270 | 0.6045 |
|
68 |
+
| 0.3579 | 9.46 | 1400 | 0.8818 | 0.5708 |
|
69 |
+
| 0.353 | 10.14 | 1500 | 0.9244 | 0.5781 |
|
70 |
+
| 0.334 | 10.81 | 1600 | 0.9009 | 0.5638 |
|
71 |
+
| 0.2917 | 11.49 | 1700 | 1.0132 | 0.5828 |
|
72 |
+
| 0.29 | 12.16 | 1800 | 0.9696 | 0.5668 |
|
73 |
+
| 0.2691 | 12.84 | 1900 | 0.9811 | 0.5455 |
|
74 |
+
| 0.25 | 13.51 | 2000 | 0.9951 | 0.5624 |
|
75 |
+
| 0.2467 | 14.19 | 2100 | 0.9653 | 0.5573 |
|
76 |
+
| 0.2242 | 14.86 | 2200 | 0.9714 | 0.5378 |
|
77 |
+
| 0.2066 | 15.54 | 2300 | 0.9829 | 0.5394 |
|
78 |
+
| 0.2075 | 16.22 | 2400 | 1.0547 | 0.5520 |
|
79 |
+
| 0.1923 | 16.89 | 2500 | 1.0014 | 0.5397 |
|
80 |
+
| 0.1919 | 17.57 | 2600 | 0.9978 | 0.5477 |
|
81 |
+
| 0.1908 | 18.24 | 2700 | 1.1064 | 0.5397 |
|
82 |
+
| 0.157 | 18.92 | 2800 | 1.0629 | 0.5238 |
|
83 |
+
| 0.159 | 19.59 | 2900 | 1.0642 | 0.5321 |
|
84 |
+
| 0.1652 | 20.27 | 3000 | 1.0207 | 0.5328 |
|
85 |
+
| 0.141 | 20.95 | 3100 | 0.9948 | 0.5312 |
|
86 |
+
| 0.1417 | 21.62 | 3200 | 1.0338 | 0.5328 |
|
87 |
+
| 0.1514 | 22.3 | 3300 | 1.0513 | 0.5313 |
|
88 |
+
| 0.1365 | 22.97 | 3400 | 1.0357 | 0.5291 |
|
89 |
+
| 0.1319 | 23.65 | 3500 | 1.0587 | 0.5167 |
|
90 |
+
| 0.1298 | 24.32 | 3600 | 1.0636 | 0.5236 |
|
91 |
+
| 0.1245 | 25.0 | 3700 | 1.1367 | 0.5280 |
|
92 |
+
| 0.1114 | 25.68 | 3800 | 1.0633 | 0.5200 |
|
93 |
+
| 0.1088 | 26.35 | 3900 | 1.0495 | 0.5210 |
|
94 |
+
| 0.1175 | 27.03 | 4000 | 1.0897 | 0.5095 |
|
95 |
+
| 0.1043 | 27.7 | 4100 | 1.0580 | 0.5309 |
|
96 |
+
| 0.0951 | 28.38 | 4200 | 1.0448 | 0.5067 |
|
97 |
+
| 0.1011 | 29.05 | 4300 | 1.0665 | 0.5137 |
|
98 |
+
| 0.0889 | 29.73 | 4400 | 1.0579 | 0.5026 |
|
99 |
+
| 0.0833 | 30.41 | 4500 | 1.0740 | 0.5037 |
|
100 |
+
| 0.0889 | 31.08 | 4600 | 1.0933 | 0.5083 |
|
101 |
+
| 0.0784 | 31.76 | 4700 | 1.0715 | 0.5089 |
|
102 |
+
| 0.0767 | 32.43 | 4800 | 1.0658 | 0.5049 |
|
103 |
+
| 0.0769 | 33.11 | 4900 | 1.1118 | 0.4979 |
|
104 |
+
| 0.0722 | 33.78 | 5000 | 1.1413 | 0.4986 |
|
105 |
+
| 0.0709 | 34.46 | 5100 | 1.0706 | 0.4885 |
|
106 |
+
| 0.0664 | 35.14 | 5200 | 1.1217 | 0.4884 |
|
107 |
+
| 0.0648 | 35.81 | 5300 | 1.1298 | 0.4941 |
|
108 |
+
| 0.0657 | 36.49 | 5400 | 1.1330 | 0.4920 |
|
109 |
+
| 0.0582 | 37.16 | 5500 | 1.0598 | 0.4835 |
|
110 |
+
| 0.0602 | 37.84 | 5600 | 1.1097 | 0.4943 |
|
111 |
+
| 0.0598 | 38.51 | 5700 | 1.0976 | 0.4876 |
|
112 |
+
| 0.0547 | 39.19 | 5800 | 1.0734 | 0.4825 |
|
113 |
+
| 0.0561 | 39.86 | 5900 | 1.0926 | 0.4850 |
|
114 |
+
| 0.0516 | 40.54 | 6000 | 1.1579 | 0.4751 |
|
115 |
+
| 0.0478 | 41.22 | 6100 | 1.1384 | 0.4706 |
|
116 |
+
| 0.0396 | 41.89 | 6200 | 1.1462 | 0.4739 |
|
117 |
+
| 0.0472 | 42.57 | 6300 | 1.1277 | 0.4732 |
|
118 |
+
| 0.0447 | 43.24 | 6400 | 1.1517 | 0.4752 |
|
119 |
+
| 0.0423 | 43.92 | 6500 | 1.1219 | 0.4784 |
|
120 |
+
| 0.0426 | 44.59 | 6600 | 1.1311 | 0.4724 |
|
121 |
+
| 0.0391 | 45.27 | 6700 | 1.1135 | 0.4692 |
|
122 |
+
| 0.0362 | 45.95 | 6800 | 1.0878 | 0.4645 |
|
123 |
+
| 0.0329 | 46.62 | 6900 | 1.1137 | 0.4668 |
|
124 |
+
| 0.0356 | 47.3 | 7000 | 1.1233 | 0.4687 |
|
125 |
+
| 0.0328 | 47.97 | 7100 | 1.1238 | 0.4653 |
|
126 |
+
| 0.0323 | 48.65 | 7200 | 1.1307 | 0.4646 |
|
127 |
+
| 0.0325 | 49.32 | 7300 | 1.1242 | 0.4645 |
|
128 |
+
| 0.03 | 50.0 | 7400 | 1.1257 | 0.4631 |
|
129 |
+
|
130 |
+
|
131 |
+
### Framework versions
|
132 |
+
|
133 |
+
- Transformers 4.16.2
|
134 |
+
- Pytorch 1.10.0+cu111
|
135 |
+
- Datasets 1.18.3
|
136 |
+
- Tokenizers 0.11.0
|