File size: 4,209 Bytes
e0cc599 bbd60cc 86ebf59 e0cc599 86ebf59 bbd60cc 86ebf59 e0cc599 86ebf59 e0cc599 86ebf59 bbd60cc 86ebf59 bbd60cc 8f33c92 bbd60cc 8f33c92 e0cc599 0f67b6d e0cc599 a742827 e0cc599 f37e18e e0cc599 f37e18e e0cc599 f37e18e e0cc599 f37e18e e0cc599 f37e18e e0cc599 a742827 e0cc599 a742827 e0cc599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-hi-wx1
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0
name: Common Voice 7
args: hi
metrics:
- type: wer
value: 37.19684845500431
name: Test WER
- name: Test CER
type: cer
value: 11.763235514672798
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi-wx1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 -HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6552
- Wer: 0.3200
Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
NA
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1800
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 12.2663 | 1.36 | 200 | 5.9245 | 1.0 |
| 4.1856 | 2.72 | 400 | 3.4968 | 1.0 |
| 3.3908 | 4.08 | 600 | 2.9970 | 1.0 |
| 1.5444 | 5.44 | 800 | 0.9071 | 0.6139 |
| 0.7237 | 6.8 | 1000 | 0.6508 | 0.4862 |
| 0.5323 | 8.16 | 1200 | 0.6217 | 0.4647 |
| 0.4426 | 9.52 | 1400 | 0.5785 | 0.4288 |
| 0.3933 | 10.88 | 1600 | 0.5935 | 0.4217 |
| 0.3532 | 12.24 | 1800 | 0.6358 | 0.4465 |
| 0.3319 | 13.6 | 2000 | 0.5789 | 0.4118 |
| 0.2877 | 14.96 | 2200 | 0.6163 | 0.4056 |
| 0.2663 | 16.33 | 2400 | 0.6176 | 0.3893 |
| 0.2511 | 17.68 | 2600 | 0.6065 | 0.3999 |
| 0.2275 | 19.05 | 2800 | 0.6183 | 0.3842 |
| 0.2098 | 20.41 | 3000 | 0.6486 | 0.3864 |
| 0.1943 | 21.77 | 3200 | 0.6365 | 0.3885 |
| 0.1877 | 23.13 | 3400 | 0.6013 | 0.3677 |
| 0.1679 | 24.49 | 3600 | 0.6451 | 0.3795 |
| 0.1667 | 25.85 | 3800 | 0.6410 | 0.3635 |
| 0.1514 | 27.21 | 4000 | 0.6000 | 0.3577 |
| 0.1453 | 28.57 | 4200 | 0.6020 | 0.3518 |
| 0.134 | 29.93 | 4400 | 0.6531 | 0.3517 |
| 0.1354 | 31.29 | 4600 | 0.6874 | 0.3578 |
| 0.1224 | 32.65 | 4800 | 0.6519 | 0.3492 |
| 0.1199 | 34.01 | 5000 | 0.6553 | 0.3490 |
| 0.1077 | 35.37 | 5200 | 0.6621 | 0.3429 |
| 0.0997 | 36.73 | 5400 | 0.6641 | 0.3413 |
| 0.0964 | 38.09 | 5600 | 0.6722 | 0.3385 |
| 0.0931 | 39.45 | 5800 | 0.6365 | 0.3363 |
| 0.0944 | 40.81 | 6000 | 0.6454 | 0.3326 |
| 0.0862 | 42.18 | 6200 | 0.6497 | 0.3256 |
| 0.0848 | 43.54 | 6400 | 0.6599 | 0.3226 |
| 0.0793 | 44.89 | 6600 | 0.6625 | 0.3232 |
| 0.076 | 46.26 | 6800 | 0.6463 | 0.3186 |
| 0.0749 | 47.62 | 7000 | 0.6559 | 0.3225 |
| 0.0663 | 48.98 | 7200 | 0.6552 | 0.3200 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|