File size: 14,354 Bytes
cf8f5fb
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15829f4290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15829f4320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15829f43b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15829f4440>", "_build": "<function ActorCriticPolicy._build at 0x7f15829f44d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f15829f4560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15829f45f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f15829f4680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15829f4710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15829f47a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15829f4830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1582a38810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651732527.3520007, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNd7b0Kewi7iOe8vZrXojyQCcI7uriNvQAAgD8AAAAAGo2nvdSD2j76Ccc+8aX6vmJWZj4yiwe8AAAAAAAAAAAAftG8BWbju7sgzzuxlvs7mCFDvYZh4TwAAIA/AACAP814ubskzLY9SvpvPL9Nhb5S16U9JUGQvQAAAAAAAAAAQJoGPqExuD1Sqwa+7qyPvowmej3GFwU9AAAAAAAAAAAzp8M7w9ROvBN/obxUIwC+leJqvPSey7wAAIA/AACAPwDScj3XOSe7yumfvIB3jjyNbDC8Yup1PQAAgD8AAIA/zYoxPH0mWT8K5ow9dH7DvnrAiDzcw6k9AAAAAAAAAAAzdJm99swhuhKNKLg6jH+zzMWjum64RjcAAAAAAACAP2bmNjlIpoa8+vM6vZ0lrjwLWMS87Zm5vAAAgD8AAIA/zZ4uPSkcf7paDAe8wcShNgJFMLvqlw+2AAAAAAAAAAAaazY9bOmhu14/Nb0ivUU9iM3vPFJt9DsAAIA/AACAPwDcOLzO7Oc+ShEAvO7doL5QnEq8AsKpvAAAAAAAAAAAxsM/PhvZw7x8RCi7k3OeOR0XK746A2Q6AACAPwAAgD9anMq9wvl7P+faBD6JTau+fm2evbFhSD4AAAAAAAAAAGYghz2PSk26pPLBvD9l5rWydQU7g7VaNQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb59VZsrcckCUhpRSlIwBbJRNIAGMAXSUR0Co832CmMwUdX2UKGgGaAloD0MIQl96+7O4cUCUhpRSlGgVTWEBaBZHQKjzigJTl1d1fZQoaAZoCWgPQwjkLy3qE8hxQJSGlFKUaBVNZAFoFkdAqPPDuhK15XV9lChoBmgJaA9DCBB4YADhBnNAlIaUUpRoFU0tAWgWR0Co9EGlImPYdX2UKGgGaAloD0MIfLlPjgKlUECUhpRSlGgVS7NoFkdAqPRkCLdepnV9lChoBmgJaA9DCNEgBU+hNXFAlIaUUpRoFU0tAWgWR0Co9Kd7OVxCdX2UKGgGaAloD0MIN2+cFGaqcUCUhpRSlGgVTVABaBZHQKj0z+glF+d1fZQoaAZoCWgPQwhWmpSCLu5wQJSGlFKUaBVNBgFoFkdAqPWesmv4d3V9lChoBmgJaA9DCMi0No0tvnFAlIaUUpRoFU1HAWgWR0Co9i1mBe5XdX2UKGgGaAloD0MI58OzBBkgb0CUhpRSlGgVTQgBaBZHQKj2z1Gsmv51fZQoaAZoCWgPQwiXi/hODK5xQJSGlFKUaBVNKgFoFkdAqPdhVQyhz3V9lChoBmgJaA9DCJ+qQgNxnHFAlIaUUpRoFU0gAWgWR0Co+FJAdGRWdX2UKGgGaAloD0MIDqFKzV6bcECUhpRSlGgVTQYBaBZHQKj4eo4uK4x1fZQoaAZoCWgPQwibyTfbXJtyQJSGlFKUaBVL8mgWR0Co+IwAMlTndX2UKGgGaAloD0MIErwhjQrmcECUhpRSlGgVTRMBaBZHQKj4q80UGml1fZQoaAZoCWgPQwjf/IaJRkxyQJSGlFKUaBVNMQFoFkdAqPkfJJXhfnV9lChoBmgJaA9DCAQEc/T4snJAlIaUUpRoFUv+aBZHQKj5d9y925h1fZQoaAZoCWgPQwjHZHH/ERpxQJSGlFKUaBVNNQFoFkdAqPmmrZJ04nV9lChoBmgJaA9DCPRtwVKd7HBAlIaUUpRoFUvxaBZHQKj5s1m8M/h1fZQoaAZoCWgPQwiTOgFNBN1wQJSGlFKUaBVNFgFoFkdAqPnXPiT+vXV9lChoBmgJaA9DCNqPFJHhqm9AlIaUUpRoFU0FAWgWR0Co+es7+1jRdX2UKGgGaAloD0MI9tGpK58Fb0CUhpRSlGgVTQMBaBZHQKj63UOuq3p1fZQoaAZoCWgPQwjLTdTSnNNwQJSGlFKUaBVNfgFoFkdAqPsXmNipenV9lChoBmgJaA9DCEKXcOitCHFAlIaUUpRoFU0PAWgWR0Co+5/igkC4dX2UKGgGaAloD0MILev+sRB+ckCUhpRSlGgVTSIBaBZHQKj8t16mfoR1fZQoaAZoCWgPQwhO0vwxLTxwQJSGlFKUaBVNCQFoFkdAqPzI00m+kHV9lChoBmgJaA9DCHl4z4HlPHFAlIaUUpRoFUvpaBZHQKj9CAavRqp1fZQoaAZoCWgPQwhntiv0QdpxQJSGlFKUaBVNBAFoFkdAqP3LKV6eG3V9lChoBmgJaA9DCHedDflnQm1AlIaUUpRoFU0TAWgWR0Co/i7Ddgv2dX2UKGgGaAloD0MIc/ON6B6hbkCUhpRSlGgVTQ0BaBZHQKj+L4Glhw51fZQoaAZoCWgPQwh0DTM0nltvQJSGlFKUaBVL7mgWR0Co/oknkT6BdX2UKGgGaAloD0MIjiEAODaKckCUhpRSlGgVTRgBaBZHQKj+4jEehf11fZQoaAZoCWgPQwjx8J4DS1xxQJSGlFKUaBVNAwFoFkdAqP8DGDL8rXV9lChoBmgJaA9DCF6hD5axLWVAlIaUUpRoFU3oA2gWR0Co/wfbKzRhdX2UKGgGaAloD0MIDHTtCyj3ckCUhpRSlGgVTREBaBZHQKj/Fz/6wdN1fZQoaAZoCWgPQwh8YTJVsB1xQJSGlFKUaBVNEAFoFkdAqP9qPhhpg3V9lChoBmgJaA9DCPhT46Wb5VBAlIaUUpRoFUvWaBZHQKj/eafjCHh1fZQoaAZoCWgPQwjEsplD0qlxQJSGlFKUaBVNIAFoFkdAqP+ZyuIRAnV9lChoBmgJaA9DCOPFwhC5A3FAlIaUUpRoFUvyaBZHQKj/vcHnln11fZQoaAZoCWgPQwjN59zt+kVwQJSGlFKUaBVL4mgWR0CpABbYkE9udX2UKGgGaAloD0MINV8lHzvHckCUhpRSlGgVS/poFkdAqQFirtE5Q3V9lChoBmgJaA9DCByxFp8CjnBAlIaUUpRoFU0mAWgWR0CpAknOjZctdX2UKGgGaAloD0MIbarukY2lcECUhpRSlGgVTRsBaBZHQKkCX+tr9EV1fZQoaAZoCWgPQwh48umxLdVuQJSGlFKUaBVNEwFoFkdAqQLyl54W13V9lChoBmgJaA9DCHmUSnjCEHBAlIaUUpRoFU0HAWgWR0CpAxQEhaC+dX2UKGgGaAloD0MItOOG340WcUCUhpRSlGgVTRUBaBZHQKkDv8TBZZB1fZQoaAZoCWgPQwi2gNB6+MJwQJSGlFKUaBVNLwFoFkdAqQP3Dxb0OHV9lChoBmgJaA9DCD2bVZ+r9HFAlIaUUpRoFUv4aBZHQKkEJh7Vrh11fZQoaAZoCWgPQwjpYWh1siNzQJSGlFKUaBVNEgFoFkdAqQQxRMvh63V9lChoBmgJaA9DCHWtvU8VUnJAlIaUUpRoFU0ZAWgWR0CpBDWll9SddX2UKGgGaAloD0MI6L6c2a4RckCUhpRSlGgVS/hoFkdAqQQ8bHZK4HV9lChoBmgJaA9DCM6luKpsGHNAlIaUUpRoFUv1aBZHQKkEeRSP2f11fZQoaAZoCWgPQwjhmjv6XzlxQJSGlFKUaBVNKAFoFkdAqQSqml67d3V9lChoBmgJaA9DCC0JUFPLtXBAlIaUUpRoFUv/aBZHQKkZOJ1JUYN1fZQoaAZoCWgPQwhr8/+qI1JwQJSGlFKUaBVNYQFoFkdAqRnFmQKa5XV9lChoBmgJaA9DCPJ8BtSb4nBAlIaUUpRoFU1wAWgWR0CpGrxcNYr8dX2UKGgGaAloD0MI/8wgPnD8cUCUhpRSlGgVTRUBaBZHQKkbGqz7di51fZQoaAZoCWgPQwgK20/GeIBvQJSGlFKUaBVL/GgWR0CpG3llkH2RdX2UKGgGaAloD0MInG1uTI+4ckCUhpRSlGgVS/VoFkdAqRveLrHEM3V9lChoBmgJaA9DCICCixU1SHBAlIaUUpRoFU0gAWgWR0CpHB3Roh6jdX2UKGgGaAloD0MIbqetEcH2bUCUhpRSlGgVS/9oFkdAqRws5n13+3V9lChoBmgJaA9DCC4CY32DzXBAlIaUUpRoFUvuaBZHQKkcoXsw+MZ1fZQoaAZoCWgPQwgvF/GdGE1vQJSGlFKUaBVL/mgWR0CpHMCDdxhldX2UKGgGaAloD0MIO8WqQZjCcUCUhpRSlGgVTQMBaBZHQKkdO8dxQzl1fZQoaAZoCWgPQwjog2Vs6JpxQJSGlFKUaBVNGgFoFkdAqR22hCdBjXV9lChoBmgJaA9DCOCgvfr4sG9AlIaUUpRoFU0QAWgWR0CpHcbw8W9EdX2UKGgGaAloD0MI0zHnGbsjcECUhpRSlGgVTQoBaBZHQKkeUGoJiRZ1fZQoaAZoCWgPQwiq1OyBVsFxQJSGlFKUaBVNPQFoFkdAqR5RPykKu3V9lChoBmgJaA9DCBVypZ4FEW1AlIaUUpRoFU0sAWgWR0CpHoXJYDDCdX2UKGgGaAloD0MIAIv8+uHLcECUhpRSlGgVS/1oFkdAqR6iVbA1vXV9lChoBmgJaA9DCGfUfJW8w3JAlIaUUpRoFU0HAWgWR0CpH711nuiOdX2UKGgGaAloD0MI5ULlX0uHbkCUhpRSlGgVS/5oFkdAqR/yiEg4fnV9lChoBmgJaA9DCOYhUz4EqHFAlIaUUpRoFU1BAWgWR0CpIduRLbpNdX2UKGgGaAloD0MIVgvsMZF9cECUhpRSlGgVTQIBaBZHQKkh58fFJg91fZQoaAZoCWgPQwhkBb8NsRVzQJSGlFKUaBVNJAFoFkdAqSIA2wV0tHV9lChoBmgJaA9DCK1oc5zbZW9AlIaUUpRoFUv4aBZHQKkiQ+K0lZ51fZQoaAZoCWgPQwg5YFeTJ+duQJSGlFKUaBVNDQFoFkdAqSQgksz2vnV9lChoBmgJaA9DCHJuE+4VS3FAlIaUUpRoFU0KAWgWR0CpJFPwVj7RdX2UKGgGaAloD0MIZ9e9FQmmcUCUhpRSlGgVTXkBaBZHQKkkpVn27Ft1fZQoaAZoCWgPQwhZT62+un5wQJSGlFKUaBVNQQFoFkdAqSS+eMAFPnV9lChoBmgJaA9DCPLOoQzV2nFAlIaUUpRoFU0oAWgWR0CpJNA9FF2FdX2UKGgGaAloD0MIrwj+txKxb0CUhpRSlGgVTSABaBZHQKklBvTgEU11fZQoaAZoCWgPQwjXFwlt+R1xQJSGlFKUaBVL5WgWR0CpJQzPSlWPdX2UKGgGaAloD0MI73TniefCcUCUhpRSlGgVTa0BaBZHQKklNy5qdpZ1fZQoaAZoCWgPQwgDeuHOxZdxQJSGlFKUaBVL/mgWR0CpJb5lOGj9dX2UKGgGaAloD0MIa7ddaK64cUCUhpRSlGgVS+loFkdAqSeMO3DvVnV9lChoBmgJaA9DCN9rCI6LCHFAlIaUUpRoFU0CAWgWR0CpJ7XSjQAudX2UKGgGaAloD0MI9DehEMF2cUCUhpRSlGgVTREBaBZHQKkoF65XlsB1fZQoaAZoCWgPQwh1riglhPZwQJSGlFKUaBVNQgFoFkdAqSliZrpJPXV9lChoBmgJaA9DCOXsndEWMnBAlIaUUpRoFUvxaBZHQKkqQswL3K11fZQoaAZoCWgPQwg8MIDwITBvQJSGlFKUaBVL8WgWR0CpKoYGt6omdX2UKGgGaAloD0MIODC5UWQbb0CUhpRSlGgVTRABaBZHQKkqk4wyqMp1fZQoaAZoCWgPQwi1GDxMe4hvQJSGlFKUaBVNGAFoFkdAqSqUmY0EYHV9lChoBmgJaA9DCJ29M9qqc3JAlIaUUpRoFU0HAWgWR0CpKqaaLGaQdX2UKGgGaAloD0MIIR0ewvibcECUhpRSlGgVTQsBaBZHQKkq1RfnfVJ1fZQoaAZoCWgPQwh2i8BYH5JwQJSGlFKUaBVL4GgWR0CpKvPgm7aqdX2UKGgGaAloD0MIJ4dPOtHUckCUhpRSlGgVTSoBaBZHQKkr7Vpblil1fZQoaAZoCWgPQwhxyXGnNEBwQJSGlFKUaBVNOAFoFkdAqSwMrAgxJ3V9lChoBmgJaA9DCCwsuB+wyXBAlIaUUpRoFUv5aBZHQKktQ1VHWjJ1fZQoaAZoCWgPQwg8LxUbM05zQJSGlFKUaBVN4QNoFkdAqS1V1U2kz3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}