--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer - NLP Regression - Regression - Edmunds Car Reviews model-index: - name: bert-base-uncased-Regression-Edmunds_Car_Reviews results: [] language: - en metrics: - mse - mae --- # bert-base-uncased-Regression-Edmunds_Car_Reviews This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased). It achieves the following results on the evaluation set: - Loss: 0.2324 - Mse: 0.2324 - Rmse: 0.4820 - Mae: 0.3089 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/NLP%20Regression/Edmunds%20Car%20Reviews%20(BERT-Base)/Edmunds_Consumer_car_Regression_All_Manufacturers_Bert_Base.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/ankkur13/edmundsconsumer-car-ratings-and-reviews ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 0.2142 | 1.0 | 11430 | 0.2421 | 0.2421 | 0.4920 | 0.3126 | | 0.1931 | 2.0 | 22860 | 0.2530 | 0.2530 | 0.5030 | 0.3336 | | 0.1192 | 3.0 | 34290 | 0.2324 | 0.2324 | 0.4820 | 0.3089 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3