--- license: apache-2.0 tags: - generated_from_trainer - Multiple Choice metrics: - accuracy model-index: - name: bert-base-uncased-Winowhy results: [] datasets: - tasksource/winowhy pipeline_tag: question-answering --- # bert-base-uncased-Winowhy This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased). It achieves the following results on the evaluation set: - Loss: 0.8005 - Accuracy: 0.7118 ## Model description https://github.com/DunnBC22/NLP_Projects/blob/main/Multiple%20Choice/Winowhy/Winowhy%20-%20Multiple%20Choice%20Using%20BERT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/tasksource/bigbench/viewer/winowhy/train **Histogram of Input Lengths** ![Histogram of Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Multiple%20Choice/Winowhy/Images/Histogram%20of%20Input%20Lengths.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7028 | 1.0 | 115 | 0.6916 | 0.5371 | | 0.6119 | 2.0 | 230 | 0.5572 | 0.7031 | | 0.4959 | 3.0 | 345 | 0.5328 | 0.7118 | | 0.4537 | 4.0 | 460 | 0.5829 | 0.7118 | | 0.2275 | 5.0 | 575 | 0.8005 | 0.7118 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3