update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-large-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: bert-large-uncased-Fake_Reviews_Classifier
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# bert-large-uncased-Fake_Reviews_Classifier
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5336
|
21 |
+
- Accuracy: 0.8381
|
22 |
+
- Weighted f1: 0.8142
|
23 |
+
- Micro f1: 0.8381
|
24 |
+
- Macro f1: 0.6308
|
25 |
+
- Weighted recall: 0.8381
|
26 |
+
- Micro recall: 0.8381
|
27 |
+
- Macro recall: 0.6090
|
28 |
+
- Weighted precision: 0.8101
|
29 |
+
- Micro precision: 0.8381
|
30 |
+
- Macro precision: 0.7029
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.001
|
50 |
+
- train_batch_size: 8
|
51 |
+
- eval_batch_size: 8
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 5
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
60 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
61 |
+
| 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | 0.5745 | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 |
|
62 |
+
| 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | 0.5060 | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 |
|
63 |
+
| 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | 0.6189 | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 |
|
64 |
+
| 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | 0.6224 | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 |
|
65 |
+
| 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | 0.6308 | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.31.0
|
71 |
+
- Pytorch 2.0.1
|
72 |
+
- Datasets 2.13.1
|
73 |
+
- Tokenizers 0.13.3
|