DunnBC22 commited on
Commit
20c1e24
1 Parent(s): 8604ec7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-large-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: bert-large-uncased-Fake_Reviews_Classifier
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bert-large-uncased-Fake_Reviews_Classifier
17
+
18
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5336
21
+ - Accuracy: 0.8381
22
+ - Weighted f1: 0.8142
23
+ - Micro f1: 0.8381
24
+ - Macro f1: 0.6308
25
+ - Weighted recall: 0.8381
26
+ - Micro recall: 0.8381
27
+ - Macro recall: 0.6090
28
+ - Weighted precision: 0.8101
29
+ - Micro precision: 0.8381
30
+ - Macro precision: 0.7029
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.001
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 5
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
60
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
61
+ | 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | 0.5745 | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 |
62
+ | 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | 0.5060 | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 |
63
+ | 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | 0.6189 | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 |
64
+ | 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | 0.6224 | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 |
65
+ | 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | 0.6308 | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.31.0
71
+ - Pytorch 2.0.1
72
+ - Datasets 2.13.1
73
+ - Tokenizers 0.13.3