--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: bert-large-uncased-Fake_Reviews_Classifier results: [] --- # bert-large-uncased-Fake_Reviews_Classifier This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased). It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.8381 - F1 - Weighted: 0.8142 - Micro: 0.8381 - Macro: 0.6308 - Recall - Weighted: 0.8381 - Micro: 0.8381 - Macro: 0.6090 - Precision - Weighted: 0.8101 - Micro: 0.8381 - Macro: 0.7029 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Fake%20Reviews/Fake%20Reviews%20Classification%20-%20BERT-Large%20With%20PEFT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to test and experiment with this model, but it is at your own risk/peril. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/razamukhtar007/fake-reviews __Histogram of Word Counts of Reviews__ ![Histogram of Word Counts of Reviews](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Histogram%20of%20Review%20Word%20Counts.png) __Class Distribution__ ![Class Distribution](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Class%20Distribution.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | __0.5745__ | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 | | 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | __0.5060__ | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 | | 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | __0.6189__ | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 | | 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | __0.6224__ | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 | | 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | __0.6308__ | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3