--- tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: codebert-base-Malicious_URLs results: [] language: - en pipeline_tag: text-classification --- # codebert-base-Malicious_URLs This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base). It achieves the following results on the evaluation set: - Loss: 0.8225 - Accuracy: 0.7279 - Weighted f1: 0.6508 - Micro f1: 0.7279 - Macro f1: 0.4611 - Weighted recall: 0.7279 - Micro recall: 0.7279 - Macro recall: 0.4422 - Weighted precision: 0.6256 - Micro precision: 0.7279 - Macro precision: 0.5436 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiclass%20Classification/Malicious%20URLs/Malicious%20URLs%20-%20CodeBERT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.8273 | 1.0 | 6450 | 0.8225 | 0.7279 | 0.6508 | 0.7279 | 0.4611 | 0.7279 | 0.7279 | 0.4422 | 0.6256 | 0.7279 | 0.5436 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3