DunnBC22 commited on
Commit
394e351
1 Parent(s): 3dcee28

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - recall
8
+ - precision
9
+ model-index:
10
+ - name: ernie-2.0-base-en-Tweet_About_Disaster_Or_Not
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ernie-2.0-base-en-Tweet_About_Disaster_Or_Not
18
+
19
+ This model is a fine-tuned version of [nghuyong/ernie-2.0-base-en](https://huggingface.co/nghuyong/ernie-2.0-base-en) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3622
22
+ - Accuracy: 0.9120
23
+ - F1: 0.7788
24
+ - Recall: 0.8341
25
+ - Precision: 0.7303
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 64
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 5
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
56
+ | 0.347 | 1.0 | 143 | 0.2663 | 0.8777 | 0.7342 | 0.9100 | 0.6154 |
57
+ | 0.2192 | 2.0 | 286 | 0.2292 | 0.9156 | 0.7876 | 0.8436 | 0.7386 |
58
+ | 0.132 | 3.0 | 429 | 0.2629 | 0.9129 | 0.7843 | 0.8531 | 0.7258 |
59
+ | 0.0767 | 4.0 | 572 | 0.3266 | 0.9120 | 0.7807 | 0.8436 | 0.7265 |
60
+ | 0.0532 | 5.0 | 715 | 0.3622 | 0.9120 | 0.7788 | 0.8341 | 0.7303 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.26.1
66
+ - Pytorch 1.13.1
67
+ - Datasets 2.9.0
68
+ - Tokenizers 0.12.1