--- tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: ernie-2.0-base-en-Tweet_About_Disaster_Or_Not results: [] language: - en --- # ernie-2.0-base-en-Tweet_About_Disaster_Or_Not This model is a fine-tuned version of [nghuyong/ernie-2.0-base-en](https://huggingface.co/nghuyong/ernie-2.0-base-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2292 - Accuracy: 0.9156 - F1: 0.7876 - Recall: 0.8436 - Precision: 0.7386 ## Model description This is a binary classification model to determine if tweet input samples are about a disaster or not. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Transformer%20Comparison/Is%20This%20Tweet%20Referring%20to%20a%20Disaster%20or%20Not%3F%20-%20ERNIE.ipynb ### Associated Projects This project is part of a comparison of multiple transformers. The others can be found at the following links: - https://huggingface.co/DunnBC22/roberta-base-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/deberta-v3-small-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/albert-base-v2-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/electra-base-emotion-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/distilbert-base-uncased-Tweet_About_Disaster_Or_Not ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. The main limitation is the quality of the data source. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/vstepanenko/disaster-tweets _Input Word Length By Class:_ ![Length of Input Text (in Words) By Class](https://github.com/DunnBC22/NLP_Projects/raw/main/Binary%20Classification/Transformer%20Comparison/Images/Tweet%20Word%20Lengths%20By%20Class.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.347 | 1.0 | 143 | 0.2663 | 0.8777 | 0.7342 | 0.9100 | 0.6154 | | 0.2192 | 2.0 | 286 | 0.2292 | 0.9156 | 0.7876 | 0.8436 | 0.7386 | | 0.132 | 3.0 | 429 | 0.2629 | 0.9129 | 0.7843 | 0.8531 | 0.7258 | | 0.0767 | 4.0 | 572 | 0.3266 | 0.9120 | 0.7807 | 0.8436 | 0.7265 | | 0.0532 | 5.0 | 715 | 0.3622 | 0.9120 | 0.7788 | 0.8341 | 0.7303 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.12.1