DunnBC22 commited on
Commit
d44688d
1 Parent(s): 1719d6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -4,14 +4,17 @@ tags:
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
 
 
 
7
  model-index:
8
  - name: fnet-base-Financial_Sentiment_Analysis
9
  results: []
 
 
 
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
  # fnet-base-Financial_Sentiment_Analysis
16
 
17
  This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the None dataset.
@@ -30,15 +33,19 @@ It achieves the following results on the evaluation set:
30
 
31
  ## Model description
32
 
33
- More information needed
 
 
34
 
35
  ## Intended uses & limitations
36
 
37
- More information needed
38
 
39
  ## Training and evaluation data
40
 
41
- More information needed
 
 
42
 
43
  ## Training procedure
44
 
@@ -69,4 +76,4 @@ The following hyperparameters were used during training:
69
  - Transformers 4.27.4
70
  - Pytorch 2.0.0
71
  - Datasets 2.11.0
72
- - Tokenizers 0.13.3
 
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
7
+ - f1
8
+ - recall
9
+ - precision
10
  model-index:
11
  - name: fnet-base-Financial_Sentiment_Analysis
12
  results: []
13
+ language:
14
+ - en
15
+ pipeline_tag: text-generation
16
  ---
17
 
 
 
 
18
  # fnet-base-Financial_Sentiment_Analysis
19
 
20
  This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the None dataset.
 
33
 
34
  ## Model description
35
 
36
+ This is a sentiment analysis (text classification) model of statements about finances.
37
+
38
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Sentiment%20Analysis/Financial%20Sentiment%20Analysis/Financial_Sentiment_Analysis_v2.ipynb
39
 
40
  ## Intended uses & limitations
41
 
42
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
43
 
44
  ## Training and evaluation data
45
 
46
+ Dataset Sources:
47
+ - https://www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis
48
+ - https://www.kaggle.com/datasets/ankurzing/sentiment-analysis-for-financial-news
49
 
50
  ## Training procedure
51
 
 
76
  - Transformers 4.27.4
77
  - Pytorch 2.0.0
78
  - Datasets 2.11.0
79
+ - Tokenizers 0.13.3