update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: squeezebert-uncased-News_About_Gold
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# squeezebert-uncased-News_About_Gold
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2643
|
19 |
+
- Accuracy: 0.9167
|
20 |
+
- Weighted f1: 0.9166
|
21 |
+
- Micro f1: 0.9167
|
22 |
+
- Macro f1: 0.8749
|
23 |
+
- Weighted recall: 0.9167
|
24 |
+
- Micro recall: 0.9167
|
25 |
+
- Macro recall: 0.8684
|
26 |
+
- Weighted precision: 0.9168
|
27 |
+
- Micro precision: 0.9167
|
28 |
+
- Macro precision: 0.8822
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
59 |
+
| 0.8756 | 1.0 | 133 | 0.4529 | 0.8699 | 0.8557 | 0.8699 | 0.6560 | 0.8699 | 0.8699 | 0.6727 | 0.8437 | 0.8699 | 0.6414 |
|
60 |
+
| 0.4097 | 2.0 | 266 | 0.3196 | 0.9026 | 0.8982 | 0.9026 | 0.7826 | 0.9026 | 0.9026 | 0.7635 | 0.9059 | 0.9026 | 0.8743 |
|
61 |
+
| 0.3147 | 3.0 | 399 | 0.2824 | 0.9115 | 0.9111 | 0.9115 | 0.8470 | 0.9115 | 0.9115 | 0.8319 | 0.9138 | 0.9115 | 0.8751 |
|
62 |
+
| 0.2685 | 4.0 | 532 | 0.2649 | 0.9186 | 0.9187 | 0.9186 | 0.8681 | 0.9186 | 0.9186 | 0.8602 | 0.9203 | 0.9186 | 0.8797 |
|
63 |
+
| 0.2479 | 5.0 | 665 | 0.2643 | 0.9167 | 0.9166 | 0.9167 | 0.8749 | 0.9167 | 0.9167 | 0.8684 | 0.9168 | 0.9167 | 0.8822 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.28.1
|
69 |
+
- Pytorch 2.0.0
|
70 |
+
- Datasets 2.11.0
|
71 |
+
- Tokenizers 0.13.3
|