File size: 15,119 Bytes
74b1bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
<div align="center">
<h1>BM25-Sparse⚡</h1>
<i>BM25S is an ultrafast implementation of BM25 in pure Python, powered by Scipy sparse matrices</i>
<table>
<tr>
<td>
<a href="https://github.com/xhluca/bm25s">💻 GitHub</a>
</td>
<td>
<a href="https://bm25s.github.io">🏠 Homepage</a>
</td>
<td>
<a href="https://arxiv.org/abs/2407.03618">📝 Technical Report</a>
</td>
<td>
<a href="https://huggingface.co/blog/xhluca/bm25s">🤗 Blog Post</a>
</td>
</tr>
</table>
</div>
Welcome to `bm25s`, a library that implements BM25 in Python, allowing you to rank documents based on a query. BM25 is a widely used ranking function used for text retrieval tasks, and is a core component of search services like Elasticsearch.
It is designed to be:
* **Fast**: `bm25s` is implemented in pure Python and leverage Scipy sparse matrices to store eagerly computed scores for all document tokens. This allows extremely fast scoring at query time, improving performance over popular libraries by orders of magnitude (see benchmarks below).
* **Simple**: `bm25s` is designed to be easy to use and understand. You can install it with pip and start using it in minutes. There is no dependencies on Java or Pytorch - all you need is Scipy and Numpy, and optional lightweight dependencies for stemming.
Below, we compare `bm25s` with Elasticsearch in terms of speedup over `rank-bm25`, the most popular Python implementation of BM25. We measure the throughput in queries per second (QPS) on a few popular datasets from [BEIR](https://github.com/beir-cellar/beir) in a single-threaded setting.
![comparison](assets/comparison.png)
<details>
<summary>Click to show citation</summary><br>
```
@misc{bm25s,
title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring},
author={Xing Han Lù},
year={2024},
eprint={2407.03618},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.03618},
}
```
</details>
> [!IMPORTANT]
> BM25S just got faster! We are currently testing out integration with numba, which would make it up to [2x faster for larger datasets](https://github.com/xhluca/bm25-benchmarks?tab=readme-ov-file#queries-per-second)! Learn more about it and share your thoughts in [this discussion thread](https://github.com/xhluca/bm25s/discussions/46).
## Installation
You can install `bm25s` with pip:
```bash
pip install bm25s
```
If you want to use stemming for better results, you can install the recommended (but optional) dependencies:
```bash
# Install all extra dependencies
pip install bm25s[full]
# If you want to use stemming for better results, you can install a stemmer
pip install PyStemmer
# To speed up the top-k selection process, you can install `jax`
pip install jax[cpu]
```
## Quickstart
Here is a simple example of how to use `bm25s`:
```python
import bm25s
import Stemmer # optional: for stemming
# Create your corpus here
corpus = [
"a cat is a feline and likes to purr",
"a dog is the human's best friend and loves to play",
"a bird is a beautiful animal that can fly",
"a fish is a creature that lives in water and swims",
]
# optional: create a stemmer
stemmer = Stemmer.Stemmer("english")
# Tokenize the corpus and only keep the ids (faster and saves memory)
corpus_tokens = bm25s.tokenize(corpus, stopwords="en", stemmer=stemmer)
# Create the BM25 model and index the corpus
retriever = bm25s.BM25()
retriever.index(corpus_tokens)
# Query the corpus
query = "does the fish purr like a cat?"
query_tokens = bm25s.tokenize(query, stemmer=stemmer)
# Get top-k results as a tuple of (doc ids, scores). Both are arrays of shape (n_queries, k)
results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=2)
for i in range(results.shape[1]):
doc, score = results[0, i], scores[0, i]
print(f"Rank {i+1} (score: {score:.2f}): {doc}")
# You can save the arrays to a directory...
retriever.save("animal_index_bm25")
# You can save the corpus along with the model
retriever.save("animal_index_bm25", corpus=corpus)
# ...and load them when you need them
import bm25s
reloaded_retriever = bm25s.BM25.load("animal_index_bm25", load_corpus=True)
# set load_corpus=False if you don't need the corpus
```
For an example that shows how to quickly index a 2M-documents corpus (Natural Questions), check out [`examples/index_nq.py`](examples/index_nq.py).
## Flexibility
`bm25s` provides a flexible API that allows you to customize the BM25 model and the tokenization process. Here are some of the options you can use:
```python
# You can provide a list of queries instead of a single query
queries = ["What is a cat?", "is the bird a dog?"]
# Provide your own stopwords list if you don't like the default one
stopwords = ["a", "the"]
# For stemming, use any function that is callable on each word list
stemmer_fn = lambda lst: [word for word in lst]
# Tokenize the queries
query_token_ids = bm25s.tokenize(queries, stopwords=stopwords, stemmer=stemmer_fn)
# If you want the tokenizer to return strings instead of token ids, you can do this
query_token_strs = bm25s.tokenize(queries, return_ids=False)
# You can use a different corpus for retrieval, e.g., titles instead of full docs
titles = ["About Cat", "About Dog", "About Bird", "About Fish"]
# You can also choose to only return the documents and omit the scores
results = retriever.retrieve(query_token_ids, corpus=titles, k=2, return_as="documents")
# The documents are returned as a numpy array of shape (n_queries, k)
for i in range(results.shape[1]):
print(f"Rank {i+1}: {results[0, i]}")
```
### Memory Efficient Retrieval
`bm25s` is designed to be memory efficient. You can use the `mmap` option to load the BM25 index as a memory-mapped file, which allows you to load the index without loading the full index into memory. This is useful when you have a large index and want to save memory:
```python
# Create a BM25 index
# ...
# let's say you have a large corpus
corpus = [
"a very long document that is very long and has many words",
"another long document that is long and has many words",
# ...
]
# Save the BM25 index to a file
retriever.save("bm25s_very_big_index", corpus=corpus)
# Load the BM25 index as a memory-mapped file, which is memory efficient
# and reduce overhead of loading the full index into memory
retriever = bm25s.BM25.load("bm25s_very_big_index", mmap=True)
```
For an example of how to use retrieve using the `mmap=True` mode, check out [`examples/retrieve_nq.py`](examples/retrieve_nq.py).
## Variants
You can use the following variants of BM25 in `bm25s` (see [Kamphuis et al. 2020](https://link.springer.com/chapter/10.1007/978-3-030-45442-5_4) for more details):
* Original implementation (`method="robertson"`) - we set `idf>=0` to avoid negatives
* ATIRE (`method="atire"`)
* BM25L (`method="bm25l"`)
* BM25+ (`method="bm25+"`)
* Lucene (`method="lucene"`)
By default, `bm25s` uses `method="lucene"`, which is Lucene's BM25 implementation (exact version). You can change the method by passing the `method` argument to the `BM25` constructor:
```python
# The IR book recommends default values of k1 between 1.2 and 2.0, and b=0.75
retriever = bm25s.BM25(method="robertson", k1=1.5, b=0.75)
# For BM25+, BM25L, you need a delta parameter (default is 0.5)
retriever = bm25s.BM25(method="bm25+", delta=1.5)
# You can also choose a different "method" for idf, while keeping the default for the rest
# for example, this is equivalent to rank-bm25 when `epsilon=0`
retriever = bm25s.BM25(method="atire", idf_method="robertson")
# and this is equivalent to bm25-pt
retriever = bm25s.BM25(method="atire", idf_method="lucene")
```
## Hugging Face Integration
`bm25` can naturally work with Hugging Face's `huggingface_hub`, allowing you to load and save to the model hub. This is useful for sharing BM25 indices and using community models.
First, make sure you have a valid [access token for the Hugging Face model hub](https://huggingface.co/settings/tokens). This is needed to save models to the hub, or to load private models. Once you created it, you can add it to your environment variables (e.g. in your `.bashrc` or `.zshrc`):
```bash
export HUGGING_FACE_HUB_TOKEN="hf_..."
```
Now, let's install the `huggingface_hub` library:
```bash
pip install huggingface_hub
```
Let's see how to use `BM25SHF.save_to_hub` to save a BM25 index to the Hugging Face model hub:
```python
import os
import bm25s
from bm25s.hf import BM25HF
# Create a BM25 index
retriever = BM25HF()
# Create your corpus here
corpus = [
"a cat is a feline and likes to purr",
"a dog is the human's best friend and loves to play",
"a bird is a beautiful animal that can fly",
"a fish is a creature that lives in water and swims",
]
corpus_tokens = bm25s.tokenize(corpus)
retriever.index(corpus_tokens)
# Set your username and token
user = "your-username"
token = os.environ["HF_TOKEN"]
retriever.save_to_hub(f"{user}/bm25s-animals", token=token, corpus=corpus)
# You can also save it publicly with private=False
```
Then, you can use the following code to load a BM25 index from the Hugging Face model hub:
```python
import bm25s
from bm25s.hf import BM25HF
# Load a BM25 index from the Hugging Face model hub
user = "your-username"
retriever = BM25HF.load_from_hub(f"{user}/bm25s-animals")
# you can specify revision and load_corpus=True if needed
retriever = BM25HF.load_from_hub(
f"{user}/bm25s-animals", revision="main", load_corpus=True
)
# if you want a low-memory usage, you can load as memory map with `mmap=True`
retriever = BM25HF.load_from_hub(
f"{user}/bm25s-animals", load_corpus=True, mmap=True
)
# Query the corpus
query = "does the fish purr like a cat?"
# Tokenize the query
query_tokens = bm25s.tokenize(query)
# Get top-k results as a tuple of (doc ids, scores). Both are arrays of shape (n_queries, k)
results, scores = retriever.retrieve(query_tokens, k=2)
```
For a complete example, check out:
* [`examples/index_to_hf.py`](examples/index_to_hf.py) for indexing a corpus and upload to Huggingface Hub
* [`examples/retrieve_from_hf.py`](examples/retrieve_from_hf.py) for loading an index alongside corpus from Huggingface Hub and querying it.
## Comparison
Here are some benchmarks comparing `bm25s` to other popular BM25 implementations. We compare the following implementations:
* `bm25s`: Our implementation of BM25 in pure Python, powered by Scipy sparse matrices.
* `rank-bm25` (`Rank`): A popular Python implementation of BM25.
* `bm25_pt` (`PT`): A Pytorch implementation of BM25.
* `elasticsearch` (`ES`): Elasticsearch with BM25 configurations.
`OOM` means the implementation ran out of memory during the benchmark.
### Throughput (Queries per second)
We compare the throughput of the BM25 implementations on various datasets. The throughput is measured in queries per second (QPS), on a single-threaded Intel Xeon CPU @ 2.70GHz (found on Kaggle). For BM25S, we take the average of 10 runs. Instances exceeding 60 queries/s are in **bold**.
| Dataset | BM25S | Elastic | BM25-PT | Rank-BM25 |
| :--------------- | ------: | ------: | ------: | --------: |
| arguana | **573.91** | 13.67 | **110.51** | 2 |
| climate-fever | 13.09 | 4.02 | OOM | 0.03 |
| cqadupstack | **170.91** | 13.38 | OOM | 0.77 |
| dbpedia-entity | 13.44 | 10.68 | OOM | 0.11 |
| fever | 20.19 | 7.45 | OOM | 0.06 |
| fiqa | **507.03** | 16.96 | 20.52 | 4.46 |
| hotpotqa | 20.88 | 7.11 | OOM | 0.04 |
| msmarco | 12.2 | 11.88 | OOM | 0.07 |
| nfcorpus | **1196.16** | 45.84 | 256.67 | **224.66** |
| nq | 41.85 | 12.16 | OOM | 0.1 |
| quora | **183.53** | 21.8 | 6.49 | 1.18 |
| scidocs | **767.05** | 17.93 | 41.34 | 9.01 |
| scifact | **952.92** | 20.81 | **184.3** | 47.6 |
| trec-covid | **85.64** | 7.34 | 3.73 | 1.48 |
| webis-touche2020 | **60.59** | 13.53 | OOM | 1.1 |
More detailed benchmarks can be found in the [bm25-benchmarks repo](https://github.com/xhluca/bm25-benchmarks).
### Disk usage
`bm25s` is designed to be lightweight. This means the total disk usage of the package is minimal, as it only requires wheels for `numpy` (18MB), `scipy` (37MB), and the package itself is less than 100KB. After installation, the full virtual environment takes more space than `rank-bm25` but less than `pyserini` and `bm25_pt`:
| Package | Disk Usage |
| ----------------- | ---------- |
| venv (no package) | 45MB |
| `rank-bm25` | 99MB |
| `bm25s` (ours) | 479MB |
| `bm25_pt` | 5346MB |
| `pyserini` | 6976MB |
| `elastic` | 1183MB |
<details>
<summary>Show Details</summary>
The disk usage of the virtual environments is calculated using the following command:
```
$ du -s *env-* --block-size=1MB
6976 conda-env-pyserini
5346 venv-bm25-pt
479 venv-bm25s
45 venv-empty
99 venv-rank-bm25
```
For `pyserini`, we use the [recommended installation](https://github.com/castorini/pyserini/blob/master/docs/installation.md) with conda environment to account for Java dependencies.
</details>
### Optimized RAM usage
`bm25s` allows considerable memory saving through the use of *memory-mapping*, which allows the index to be stored on disk and loaded on demand.
When testing with 6 arbitrary queries with an index built with MS MARCO (8.8M documents, 300M+ tokens), we have the following:
| Method | Load Index (s) | Retrieval (s) | RAM usage (GB) |
| ------ | ----------------- | ------------- | -------------- |
| Memory-mapped | 0.62 | 0.18 | 0.90 |
| In-memory | 11.41 | 0.74 | 10.56 |
When you run `bm25s` on 1000 queries on the Natural Questions dataset (2M+ documents), the memory usage is over 50% lower than the in-memory version with trivial difference in speed. You can find more information in the [GitHub repository](https://github.com/xhluca/bm25s).
## Acknowledgement
* The multilingual stopwords are sourced from the [NLTK stopwords lists](https://github.com/nltk/nltk/blob/96ee715997e1c8d9148b6d8e1b32f412f31c7ff7/nltk/corpus/__init__.py#L315).
* The numba implementation are inspired by numba implementations originally proposed by [baguetter](https://github.com/mixedbread-ai/baguetter) and [retriv](https://github.com/AmenRa/retriv).
## Citation
If you use `bm25s` in your work, please use the following bibtex:
```
@misc{bm25s,
title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring},
author={Xing Han Lù},
year={2024},
eprint={2407.03618},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.03618},
}
```
|