|
""" |
|
# Example: Retrieve from pre-built index of Natural Questions |
|
|
|
This shows how to load an index built with BM25.index and saved with BM25.save, and retrieve |
|
the top-k results for a set of queries from the Natural Questions dataset, via BEIR library. |
|
|
|
To run this example, you need to install the following dependencies: |
|
|
|
```bash |
|
pip install beir bm25s[full] |
|
``` |
|
|
|
To build an index, please refer to the `examples/index_nq.py` script. You |
|
can run this script with: |
|
|
|
```bash |
|
python examples/index_nq.py |
|
``` |
|
|
|
Then, run this script with: |
|
|
|
```bash |
|
python examples/retrieve_nq.py |
|
``` |
|
""" |
|
import beir.util |
|
from beir.datasets.data_loader import GenericDataLoader |
|
import Stemmer |
|
|
|
import bm25s |
|
from bm25s.utils.beir import BASE_URL |
|
|
|
def main(index_dir="bm25s_indices/nq", data_dir="datasets", dataset="nq", mmap=True): |
|
if mmap: |
|
print("Using memory-mapped index (mmap) to reduce memory usage.") |
|
|
|
|
|
data_path = beir.util.download_and_unzip(BASE_URL.format(dataset), data_dir) |
|
loader = GenericDataLoader(data_folder=data_path) |
|
loader._load_queries() |
|
queries_lst = list(loader.queries.values())[:1000] |
|
|
|
|
|
stemmer = Stemmer.Stemmer("english") |
|
queries_tokenized = bm25s.tokenize(queries_lst, stemmer=stemmer) |
|
|
|
|
|
retriever = bm25s.BM25.load(index_dir, mmap=mmap, load_corpus=True) |
|
results = retriever.retrieve(queries_tokenized, k=20) |
|
|
|
first_result = results.documents[0] |
|
print(f"First score (# 1 result):{results.scores[0, 0]}") |
|
print(f"First result (# 1 result):\n{first_result[0]}") |
|
|
|
if __name__ == "__main__": |
|
main() |