speaker_identify / stage1_pretrain.py
DuyTa's picture
Upload folder using huggingface_hub
f831146 verified
import time
import argparse
import numpy as np
import torch
import tqdm
from torch import optim
from torch.utils.data import DataLoader
from data_proc.cross_entropy_dataset import FBanksCrossEntropyDataset
from models.cross_entropy_model import FBankCrossEntropyNetV2
from utils.pt_util import restore_objects, save_model, save_objects, restore_model
from trainer.cross_entropy_train import train, test
def main(args):
model_path = f"saved_models_cross_entropy/{args.num_layers}/"
use_cuda = True
device = "cuda" if torch.cuda.is_available() else "cpu"
print('using device', device)
import multiprocessing
print('num cpus:', multiprocessing.cpu_count())
kwargs = {'num_workers': multiprocessing.cpu_count(),
'pin_memory': True} if use_cuda else {}
train_dataset = FBanksCrossEntropyDataset(args.train_folder)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_dataset = FBanksCrossEntropyDataset(args.test_folder)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
model = FBankCrossEntropyNetV2(num_layers=args.num_layers, reduction='mean').to(device)
model = restore_model(model, model_path)
last_epoch, max_accuracy, train_losses, test_losses, train_accuracies, test_accuracies = restore_objects(model_path, (0, 0, [], [], [], []))
start = last_epoch + 1 if max_accuracy > 0 else 0
optimizer = optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(start, args.epochs):
train_loss, train_accuracy = train(model, device, train_loader, optimizer, epoch, 500)
test_loss, test_accuracy = test(model, device, test_loader)
print('After epoch: {}, train_loss: {}, test loss is: {}, train_accuracy: {}, '
'test_accuracy: {}'.format(epoch, train_loss, test_loss, train_accuracy, test_accuracy))
train_losses.append(train_loss)
test_losses.append(test_loss)
train_accuracies.append(train_accuracy)
test_accuracies.append(test_accuracy)
if test_accuracy > max_accuracy:
max_accuracy = test_accuracy
save_model(model, epoch, model_path)
save_objects((epoch, max_accuracy, train_losses, test_losses, train_accuracies, test_accuracies), epoch, model_path)
print('saved epoch: {} as checkpoint'.format(epoch))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='FBank Cross Entropy Training Script')
parser.add_argument('--num_layers', type=int, default=2, help='Number of layers in the model')
parser.add_argument('--train_folder', type=str, default='fbanks_train', help='Training dataset folder')
parser.add_argument('--test_folder', type=str, default='fbanks_test', help='Testing dataset folder')
parser.add_argument('--epochs', type=int, default=20, help='Number of epochs to train')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training')
parser.add_argument('--lr', type=float, default=0.0005, help='Learning rate for the optimizer')
args = parser.parse_args()
main(args)