|
import time |
|
import numpy as np |
|
import torch |
|
import tqdm |
|
|
|
def train(model, device, train_loader, optimizer, epoch, log_interval): |
|
model.train() |
|
losses = [] |
|
accuracy = 0 |
|
for batch_idx, (x, y) in enumerate(tqdm.tqdm(train_loader)): |
|
x, y = x.to(device), y.to(device) |
|
optimizer.zero_grad() |
|
out = model(x) |
|
loss = model.loss(out, y) |
|
|
|
with torch.no_grad(): |
|
pred = torch.argmax(out, dim=1) |
|
accuracy += torch.sum((pred == y)) |
|
|
|
losses.append(loss.item()) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if batch_idx % log_interval == 0: |
|
print('{} Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
|
time.ctime(time.time()), |
|
epoch, batch_idx * len(x), len(train_loader.dataset), |
|
100. * batch_idx / len(train_loader), loss.item())) |
|
|
|
accuracy_mean = (100. * accuracy) / len(train_loader.dataset) |
|
|
|
return np.mean(losses), accuracy_mean.item() |
|
|
|
|
|
def test(model, device, test_loader, log_interval=None): |
|
model.eval() |
|
losses = [] |
|
|
|
accuracy = 0 |
|
with torch.no_grad(): |
|
for batch_idx, (x, y) in enumerate(tqdm.tqdm(test_loader)): |
|
x, y = x.to(device), y.to(device) |
|
out = model(x) |
|
test_loss_on = model.loss(out, y).item() |
|
losses.append(test_loss_on) |
|
|
|
pred = torch.argmax(out, dim=1) |
|
accuracy += torch.sum((pred == y)) |
|
|
|
if log_interval is not None and batch_idx % log_interval == 0: |
|
print('{} Test: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
|
time.ctime(time.time()), |
|
batch_idx * len(x), len(test_loader.dataset), |
|
100. * batch_idx / len(test_loader), test_loss_on)) |
|
|
|
test_loss = np.mean(losses) |
|
accuracy_mean = (100. * accuracy) / len(test_loader.dataset) |
|
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} , ({:.4f})%\n'.format( |
|
test_loss, accuracy, len(test_loader.dataset), accuracy_mean)) |
|
return test_loss, accuracy_mean.item() |
|
|