File size: 1,697 Bytes
4abc1d2
 
 
0b0b49e
 
4abc1d2
 
 
 
 
 
 
 
 
 
ad16c50
0b0b49e
 
 
 
4abc1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8245b
0b0b49e
4abc1d2
 
908a208
0b0b49e
4abc1d2
 
f9d18d1
31dbddd
4abc1d2
 
0b0b49e
 
 
 
 
 
 
 
 
 
 
4abc1d2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-asr-th-2

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1961
- Wer: 0.3488
- Cer: 0.0967

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 72
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.5833        | 0.36  | 1000 | 0.2734          | 0.4104 | 0.1166 |
| 0.5996        | 0.71  | 2000 | 0.2426          | 0.3957 | 0.1114 |
| 0.4372        | 1.07  | 3000 | 0.2234          | 0.3716 | 0.1029 |
| 0.4109        | 1.42  | 4000 | 0.2070          | 0.3570 | 0.0976 |
| 0.3881        | 1.78  | 5000 | 0.1961          | 0.3488 | 0.0967 |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2