File size: 1,628 Bytes
4abc1d2
 
 
f9d18d1
 
4abc1d2
 
 
 
 
 
 
 
 
 
ad16c50
908a208
ad16c50
 
 
4abc1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8245b
 
4abc1d2
 
908a208
 
4abc1d2
 
f9d18d1
 
4abc1d2
 
f9d18d1
 
 
 
ad16c50
 
 
 
f9d18d1
 
4abc1d2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-asr-th-2

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2590
- Wer: 0.4210
- Cer: 0.1146

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.6189        | 0.24  | 1000 | 0.3571          | 0.5060 | 0.1449 |
| 0.5435        | 0.47  | 2000 | 0.3255          | 0.4712 | 0.1328 |
| 0.5612        | 0.71  | 3000 | 0.2870          | 0.4464 | 0.1233 |
| 0.6737        | 0.95  | 4000 | 0.2590          | 0.4210 | 0.1146 |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2