File size: 1,850 Bytes
4abc1d2 362c82f ca5ddaf 4abc1d2 1f85172 c1ba798 1f85172 ca5ddaf 4abc1d2 265a0bb 0b0b49e 09b16b8 afff12b 4abc1d2 09b16b8 362c82f 4abc1d2 908a208 362c82f 4abc1d2 e040936 09b16b8 4abc1d2 362c82f 09b16b8 362c82f 4abc1d2 362c82f 1f85172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-asr-th-2
results: []
datasets:
- common_voice
- mozilla-foundation/common_voice_10_0
language:
- th
pipeline_tag: automatic-speech-recognition
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-asr-th-2
This model was find-tune from on the CommonVoice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2310
- Wer: 32.99%
- Cer: 3.75%
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.065 | 0.18 | 1000 | 0.5433 | 0.3259 | 0.0891 |
| 0.0792 | 0.36 | 2000 | 0.5453 | 0.3269 | 0.0901 |
| 0.1663 | 0.53 | 3000 | 0.4702 | 0.3299 | 0.0908 |
| 0.7971 | 0.71 | 4000 | 0.2513 | 0.3244 | 0.0889 |
| 0.7588 | 0.89 | 5000 | 0.2310 | 0.3196 | 0.0878 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3 |