File size: 1,850 Bytes
4abc1d2
 
 
362c82f
 
ca5ddaf
4abc1d2
 
 
1f85172
 
c1ba798
1f85172
 
 
ca5ddaf
4abc1d2
 
 
 
 
 
 
265a0bb
0b0b49e
09b16b8
afff12b
 
4abc1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b16b8
362c82f
4abc1d2
 
908a208
362c82f
4abc1d2
 
e040936
09b16b8
4abc1d2
 
362c82f
 
 
 
09b16b8
 
 
 
 
362c82f
 
4abc1d2
 
362c82f
 
 
1f85172
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-asr-th-2
  results: []
datasets:
- common_voice
- mozilla-foundation/common_voice_10_0
language:
- th
pipeline_tag: automatic-speech-recognition
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-asr-th-2

This model was find-tune from  on the CommonVoice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2310
- Wer: 32.99%
- Cer: 3.75%

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.065         | 0.18  | 1000 | 0.5433          | 0.3259 | 0.0891 |
| 0.0792        | 0.36  | 2000 | 0.5453          | 0.3269 | 0.0901 |
| 0.1663        | 0.53  | 3000 | 0.4702          | 0.3299 | 0.0908 |
| 0.7971        | 0.71  | 4000 | 0.2513          | 0.3244 | 0.0889 |
| 0.7588        | 0.89  | 5000 | 0.2310          | 0.3196 | 0.0878 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3