File size: 2,287 Bytes
5d9584e bd2ac0e 5d9584e bd2ac0e 5d9584e cda329e 5d9584e 1d00c31 5d9584e a1999a8 5d9584e b7895ae cda329e 5d9584e bd2ac0e 5d9584e 99b0d21 5d9584e d8cc25f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-asr-th
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5920
- Wer: 0.5256
- Cer: 0.1778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.6977 | 0.57 | 500 | 3.6087 | 1.0 | 0.9999 |
| 3.4771 | 1.14 | 1000 | 3.4975 | 1.0 | 0.9999 |
| 2.6942 | 1.71 | 1500 | 2.2851 | 1.0067 | 0.6597 |
| 1.698 | 2.28 | 2000 | 1.0650 | 0.7875 | 0.3045 |
| 1.5008 | 2.85 | 2500 | 0.8698 | 0.6838 | 0.2508 |
| 1.1706 | 3.42 | 3000 | 0.7382 | 0.6132 | 0.2140 |
| 1.1872 | 4.0 | 3500 | 0.6924 | 0.5840 | 0.2029 |
| 1.1422 | 4.57 | 4000 | 0.6531 | 0.5690 | 0.1959 |
| 0.9556 | 5.14 | 4500 | 0.6246 | 0.5432 | 0.1850 |
| 1.0091 | 5.71 | 5000 | 0.6052 | 0.5360 | 0.1822 |
| 1.0523 | 6.28 | 5500 | 0.5995 | 0.5293 | 0.1802 |
| 1.0205 | 6.85 | 6000 | 0.5920 | 0.5256 | 0.1778 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|