File size: 1,763 Bytes
5d9584e
 
 
d1faa3b
 
5d9584e
 
 
 
 
 
 
 
 
 
3491e56
d1faa3b
 
 
 
5d9584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3491e56
 
 
5d9584e
a1999a8
3491e56
5d9584e
 
d1faa3b
3491e56
5d9584e
 
d1faa3b
 
 
 
 
 
 
 
 
 
 
 
5d9584e
 
99b0d21
5d9584e
3491e56
d8cc25f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-asr-th
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-asr-th

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4214
- Wer: 0.3708
- Cer: 0.1236

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.6395        | 0.86  | 500  | 0.5238          | 0.4279 | 0.1463 |
| 0.4942        | 1.71  | 1000 | 0.5227          | 0.4188 | 0.1404 |
| 0.4195        | 2.57  | 1500 | 0.4984          | 0.4019 | 0.1344 |
| 0.514         | 3.42  | 2000 | 0.4713          | 0.3828 | 0.1305 |
| 0.4964        | 4.28  | 2500 | 0.4490          | 0.3780 | 0.1261 |
| 0.5175        | 5.14  | 3000 | 0.4214          | 0.3708 | 0.1236 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2