PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.70 +/- 15.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00aa16c9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00aa16ca60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00aa16caf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00aa16cb80>", "_build": "<function ActorCriticPolicy._build at 0x7f00aa16cc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f00aa16cca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00aa16cd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00aa16cdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00aa16ce50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00aa16cee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00aa16cf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00aa16d000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f00b1cc27c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689245290247882934, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAoBLz/KR0+WlX9PYDNRL5NqqQ8EvTwvAAAAAAAAAAAs7fiPYAUlD/GDDE9pn57vmGg/D0mQRy+AAAAAAAAAACzUjs9cf1+uRh0/7u95wA48BH7uorHP7cAAIA/AACAP00UrD0Uzoq6djGVOdwG/bVRMAc7wPn2tAAAgD8AAIA/DUqWPUhpkLpFRac6/vGjNfrqADt6EsK5AACAPwAAgD9z1IA91K5fPzDNPr6J9pS+s06pva5rQTwAAAAAAAAAAM3A7juuVZe6bgq9uhMcl7YqUtA6EIQHNgAAgD8AAIA/s+ZEvSkICbqiSJQ8H9mMNQr30zke3400AAAAAAAAgD9mtJy8Kbg6ugu9ejore4m2OojUus/NkLkAAIA/AACAP2bSGLxIY4G6C8bcO8WQujgDBoG62I0RugAAgD8AAIA/AGWWPFx7YLpblk87XhqpN/TLMzqgToo2AACAPwAAgD+zuSM+FLCBvNJtkTsbVM65OCbgvZggx7oAAAAAAACAP7NMLz0pJG668/9uOqnzUTVuOhe7NSeMuQAAgD8AAIA/JlOCva5HgbjWtYA5iW/yNEjkwDtl9Ji4AACAPwAAgD8AcNo6H2WqucDakLnfRIG02+oUO6DRrTgAAIA/AACAP2Y+NT2ukbK6MRUjuvpvFbXA7DU6om86OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU6wtSQ5m2MAWyUTegDjAF0lEdAoI7qTbFju3V9lChoBkdAYu3/p+tr9GgHTegDaAhHQKCPI0WuX/p1fZQoaAZHQCPpCUornT1oB00rAWgIR0CgkHbgsK9gdX2UKGgGR0A+JH/cWTHKaAdNBQFoCEdAoJJFcSoOx3V9lChoBkdAY+HzDn/1hGgHTegDaAhHQKCS9R8c+7l1fZQoaAZHQEC8QEpy6tloB00hAWgIR0CglNVNQCSzdX2UKGgGR0BhXeBas6q9aAdN6ANoCEdAoJeSfWcz7HV9lChoBkdAXyAuRLbpNmgHTegDaAhHQKCYg6OHWSV1fZQoaAZHQDuAtoSL61toB00TAWgIR0Cgmlgy/KyOdX2UKGgGR0BeFQbMottiaAdN6ANoCEdAoJwTOC5Et3V9lChoBkdAYTM8QI2OyWgHTegDaAhHQKCcc+36Q/51fZQoaAZHQGMpjNpudf9oB03oA2gIR0Cgnms/Y8MedX2UKGgGR0BNFL9VFQVLaAdNGwFoCEdAoKqjEP1+RnV9lChoBkdAY7wikfs/p2gHTegDaAhHQKCs879Q40d1fZQoaAZHQGUyMkIHC41oB03oA2gIR0CgrTdLYf4idX2UKGgGR0BjWBJGvwEyaAdN6ANoCEdAoLAg77sOXnV9lChoBkdAYrdZOi35OGgHTegDaAhHQKCwLz4k/r11fZQoaAZHQGN7SUcGTs9oB03oA2gIR0CgtC/nGKhtdX2UKGgGR0BnDO7QLNOeaAdN6ANoCEdAoLdpKvmoznV9lChoBkdAZexRD1Gsm2gHTegDaAhHQKC3rCw8nu11fZQoaAZHQGFvsC1Z1V5oB03oA2gIR0CguSBuO0b+dX2UKGgGR0BlMIarFOwgaAdN6ANoCEdAoLvlhG6PKnV9lChoBkdAZYeDf3vhImgHTegDaAhHQKC9/vhIe5p1fZQoaAZHQEAi27Wd3B5oB0vuaAhHQKC/LtJFspJ1fZQoaAZHQGBl14gRsdloB03oA2gIR0Cgwx/TLGJfdX2UKGgGR0BkOvymQ8wIaAdN6ANoCEdAoMWaAWi1zHV9lChoBkdAYSzrOZ9d/2gHTegDaAhHQKDHhxH5Jsh1fZQoaAZHQGKzAk1Mue1oB03oA2gIR0Cgx+k6cRUWdX2UKGgGR0Bl3cyN4qwyaAdN6ANoCEdAoMnt7dBSk3V9lChoBkdAW8hnAZbY9WgHTegDaAhHQKDTpftx+8Z1fZQoaAZHQFyqqW1MM7VoB03oA2gIR0Cg1cy1uzhQdX2UKGgGR0BmL7QokRjCaAdN6ANoCEdAoNYT3oLXtnV9lChoBkdAQF7FyaNMoWgHTR4BaAhHQKDYcSs8xKx1fZQoaAZHQGNuVHnU2DRoB03oA2gIR0Cg2PyPMjeLdX2UKGgGR0BilR7PY4ACaAdN6ANoCEdAoNkLcM3IdXV9lChoBkdAYwuRfWtlqmgHTegDaAhHQKDd2aR6nix1fZQoaAZHQEOdQ0GeMAFoB003AWgIR0Cg4QwFTvRadX2UKGgGR0Bjs3xtpEhJaAdN6ANoCEdAoOLGtjkMkXV9lChoBkdAKJx+rlvIfmgHTRIBaAhHQKDje1LJ0XB1fZQoaAZHQGUYFR51Ng1oB03oA2gIR0Cg5JJaaCtjdX2UKGgGR0BlUU2cawUyaAdN6ANoCEdAoOdY4sEq2HV9lChoBkdAYv0t+1Bt12gHTegDaAhHQKDpZwgkkbB1fZQoaAZHQGYXgh8pkPNoB03oA2gIR0Cg6ksCDEm6dX2UKGgGR0BmnJNKyv9taAdN6ANoCEdAoO0m/cnE23V9lChoBkdAYbkBNmDlHWgHTegDaAhHQKDu+lNUOut1fZQoaAZHQGbVrGrCFbpoB03oA2gIR0Cg8KfNZ/0/dX2UKGgGR0BksIjjaPCEaAdN6ANoCEdAoPMtc8kleHV9lChoBkdAY1S46Oo5xWgHTegDaAhHQKD00h9LHuJ1fZQoaAZHQGOugJLM9r5oB03oA2gIR0ChAgxBNVR2dX2UKGgGR0AzZGDcuanaaAdNGgFoCEdAoQPxi5NGmXV9lChoBkdAYTP5M10knmgHTegDaAhHQKEFCQnQY1p1fZQoaAZHQF0Mz1bqyGBoB03oA2gIR0ChBRl/YraudX2UKGgGR0BeJuH31zySaAdN6ANoCEdAoQk+XVsk6nV9lChoBkdAOhKTfR/mT2gHTQkBaAhHQKEKW0GeMAF1fZQoaAZHQGZ7ei8FpwloB03oA2gIR0ChC5P69CeFdX2UKGgGR0Bi0bKJVKf4aAdN6ANoCEdAoQzCZtvXLHV9lChoBkdASomGoJiRXGgHS/loCEdAoQ0ZZSvTw3V9lChoBkdAXTNlXiiqQ2gHTegDaAhHQKENQD8tPHl1fZQoaAZHQGIJNTLns9loB03oA2gIR0ChDiRgy/KydX2UKGgGR0BhS5xtHhCMaAdN6ANoCEdAoRCvyqdYn3V9lChoBkdAYVUlgtvn82gHTegDaAhHQKESjoIv8Il1fZQoaAZHQF21Ve8f3exoB03oA2gIR0ChE3U+TvAodX2UKGgGR0BlFoQL/jsEaAdN6ANoCEdAoRbkRe1KG3V9lChoBkdAZDjIMBp5/2gHTegDaAhHQKEZXK15Sm91fZQoaAZHQGPZd5Y5ksloB03oA2gIR0ChHx79If8udX2UKGgGR0BkIvVwxWT5aAdN6ANoCEdAoSDKvkili3V9lChoBkdAY2vFBIFvAGgHTegDaAhHQKEttc/t6X11fZQoaAZHQGKnOez2OABoB03oA2gIR0ChLt3Upd8idX2UKGgGR0A648UEgW8AaAdL/GgIR0ChMRX531SPdX2UKGgGR0BmYaJKraM8aAdN6ANoCEdAoTOJGrjo6nV9lChoBkdAZmkaP0Zm7WgHTegDaAhHQKE06Nm16Vt1fZQoaAZHQGf5P863iJhoB03oA2gIR0ChNmjq4YrKdX2UKGgGR0BmVuBz3h4uaAdN6ANoCEdAoTfr/VAiV3V9lChoBkdAZB5q1w5vL2gHTegDaAhHQKE4YmzjWCp1fZQoaAZHQGDCC8vmHQBoB03oA2gIR0ChOI5vDP4VdX2UKGgGR0BieoCyQgcMaAdN6ANoCEdAoTmeIXTEznV9lChoBkdAYllCHARChWgHTegDaAhHQKE8M5+Ytxx1fZQoaAZHQEIb+WnjyWloB00BAWgIR0ChPWSX+l0pdX2UKGgGR0BigZAbADaHaAdN6ANoCEdAoT3Kr92ovXV9lChoBkdAXjZh1DBuXWgHTegDaAhHQKE+jj9XLeR1fZQoaAZHQGY9unl4keJoB03oA2gIR0ChQQnhCMP0dX2UKGgGR0BkhS7mMfihaAdN6ANoCEdAoUK5uCPIXHV9lChoBkdAZJUhNdqtYGgHTegDaAhHQKFG+mDUVi51fZQoaAZHQGODVwo9cKRoB03oA2gIR0ChWCQqRU3odX2UKGgGR0Bg3Y/PgNwzaAdN6ANoCEdAoVlYbGWD6HV9lChoBkdAaCnFa0QbuWgHTegDaAhHQKFbml+EytV1fZQoaAZHQGJTMa0hNdtoB03oA2gIR0ChXYrWAf+1dX2UKGgGR0BlrGBnSOR1aAdN6ANoCEdAoV+prLyMDXV9lChoBkdAZC0XHBDXv2gHTegDaAhHQKFgx8HfMwF1fZQoaAZHQGKPvDxb0OFoB03oA2gIR0ChYRrmQr+YdX2UKGgGR0BlMloexOclaAdN6ANoCEdAoWE+WyC4BnV9lChoBkdAYd3siSq2jWgHTegDaAhHQKFiHbAUL2J1fZQoaAZHQGdItq59Vm1oB03oA2gIR0ChZIInKGL2dX2UKGgGR0BlOpwuM+/yaAdN6ANoCEdAoWXTlzU7S3V9lChoBkdAYi9G6PKdQWgHTegDaAhHQKFmSGM4tHx1fZQoaAZHQGMWNg0CRwJoB03oA2gIR0ChZyBshxHYdX2UKGgGR0BmeidrftQbaAdN6ANoCEdAoWnMUbkwOHV9lChoBkdAZA42/i5uqGgHTegDaAhHQKFrqka/ATJ1fZQoaAZHQFt6uUUwi7loB03oA2gIR0Chcjjtoi9qdX2UKGgGR0BISr1/Ue+3aAdNDwFoCEdAoXW6K1og3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a846dc437e44658afc244224eab203c36ebff201f25fa3d58580b4b2b5e93ac
|
3 |
+
size 146754
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00aa16c9d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00aa16ca60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00aa16caf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00aa16cb80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00aa16cc10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00aa16cca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00aa16cd30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00aa16cdc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00aa16ce50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00aa16cee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00aa16cf70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00aa16d000>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f00b1cc27c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689245290247882934,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAoBLz/KR0+WlX9PYDNRL5NqqQ8EvTwvAAAAAAAAAAAs7fiPYAUlD/GDDE9pn57vmGg/D0mQRy+AAAAAAAAAACzUjs9cf1+uRh0/7u95wA48BH7uorHP7cAAIA/AACAP00UrD0Uzoq6djGVOdwG/bVRMAc7wPn2tAAAgD8AAIA/DUqWPUhpkLpFRac6/vGjNfrqADt6EsK5AACAPwAAgD9z1IA91K5fPzDNPr6J9pS+s06pva5rQTwAAAAAAAAAAM3A7juuVZe6bgq9uhMcl7YqUtA6EIQHNgAAgD8AAIA/s+ZEvSkICbqiSJQ8H9mMNQr30zke3400AAAAAAAAgD9mtJy8Kbg6ugu9ejore4m2OojUus/NkLkAAIA/AACAP2bSGLxIY4G6C8bcO8WQujgDBoG62I0RugAAgD8AAIA/AGWWPFx7YLpblk87XhqpN/TLMzqgToo2AACAPwAAgD+zuSM+FLCBvNJtkTsbVM65OCbgvZggx7oAAAAAAACAP7NMLz0pJG668/9uOqnzUTVuOhe7NSeMuQAAgD8AAIA/JlOCva5HgbjWtYA5iW/yNEjkwDtl9Ji4AACAPwAAgD8AcNo6H2WqucDakLnfRIG02+oUO6DRrTgAAIA/AACAP2Y+NT2ukbK6MRUjuvpvFbXA7DU6om86OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU6wtSQ5m2MAWyUTegDjAF0lEdAoI7qTbFju3V9lChoBkdAYu3/p+tr9GgHTegDaAhHQKCPI0WuX/p1fZQoaAZHQCPpCUornT1oB00rAWgIR0CgkHbgsK9gdX2UKGgGR0A+JH/cWTHKaAdNBQFoCEdAoJJFcSoOx3V9lChoBkdAY+HzDn/1hGgHTegDaAhHQKCS9R8c+7l1fZQoaAZHQEC8QEpy6tloB00hAWgIR0CglNVNQCSzdX2UKGgGR0BhXeBas6q9aAdN6ANoCEdAoJeSfWcz7HV9lChoBkdAXyAuRLbpNmgHTegDaAhHQKCYg6OHWSV1fZQoaAZHQDuAtoSL61toB00TAWgIR0Cgmlgy/KyOdX2UKGgGR0BeFQbMottiaAdN6ANoCEdAoJwTOC5Et3V9lChoBkdAYTM8QI2OyWgHTegDaAhHQKCcc+36Q/51fZQoaAZHQGMpjNpudf9oB03oA2gIR0Cgnms/Y8MedX2UKGgGR0BNFL9VFQVLaAdNGwFoCEdAoKqjEP1+RnV9lChoBkdAY7wikfs/p2gHTegDaAhHQKCs879Q40d1fZQoaAZHQGUyMkIHC41oB03oA2gIR0CgrTdLYf4idX2UKGgGR0BjWBJGvwEyaAdN6ANoCEdAoLAg77sOXnV9lChoBkdAYrdZOi35OGgHTegDaAhHQKCwLz4k/r11fZQoaAZHQGN7SUcGTs9oB03oA2gIR0CgtC/nGKhtdX2UKGgGR0BnDO7QLNOeaAdN6ANoCEdAoLdpKvmoznV9lChoBkdAZexRD1Gsm2gHTegDaAhHQKC3rCw8nu11fZQoaAZHQGFvsC1Z1V5oB03oA2gIR0CguSBuO0b+dX2UKGgGR0BlMIarFOwgaAdN6ANoCEdAoLvlhG6PKnV9lChoBkdAZYeDf3vhImgHTegDaAhHQKC9/vhIe5p1fZQoaAZHQEAi27Wd3B5oB0vuaAhHQKC/LtJFspJ1fZQoaAZHQGBl14gRsdloB03oA2gIR0Cgwx/TLGJfdX2UKGgGR0BkOvymQ8wIaAdN6ANoCEdAoMWaAWi1zHV9lChoBkdAYSzrOZ9d/2gHTegDaAhHQKDHhxH5Jsh1fZQoaAZHQGKzAk1Mue1oB03oA2gIR0Cgx+k6cRUWdX2UKGgGR0Bl3cyN4qwyaAdN6ANoCEdAoMnt7dBSk3V9lChoBkdAW8hnAZbY9WgHTegDaAhHQKDTpftx+8Z1fZQoaAZHQFyqqW1MM7VoB03oA2gIR0Cg1cy1uzhQdX2UKGgGR0BmL7QokRjCaAdN6ANoCEdAoNYT3oLXtnV9lChoBkdAQF7FyaNMoWgHTR4BaAhHQKDYcSs8xKx1fZQoaAZHQGNuVHnU2DRoB03oA2gIR0Cg2PyPMjeLdX2UKGgGR0BilR7PY4ACaAdN6ANoCEdAoNkLcM3IdXV9lChoBkdAYwuRfWtlqmgHTegDaAhHQKDd2aR6nix1fZQoaAZHQEOdQ0GeMAFoB003AWgIR0Cg4QwFTvRadX2UKGgGR0Bjs3xtpEhJaAdN6ANoCEdAoOLGtjkMkXV9lChoBkdAKJx+rlvIfmgHTRIBaAhHQKDje1LJ0XB1fZQoaAZHQGUYFR51Ng1oB03oA2gIR0Cg5JJaaCtjdX2UKGgGR0BlUU2cawUyaAdN6ANoCEdAoOdY4sEq2HV9lChoBkdAYv0t+1Bt12gHTegDaAhHQKDpZwgkkbB1fZQoaAZHQGYXgh8pkPNoB03oA2gIR0Cg6ksCDEm6dX2UKGgGR0BmnJNKyv9taAdN6ANoCEdAoO0m/cnE23V9lChoBkdAYbkBNmDlHWgHTegDaAhHQKDu+lNUOut1fZQoaAZHQGbVrGrCFbpoB03oA2gIR0Cg8KfNZ/0/dX2UKGgGR0BksIjjaPCEaAdN6ANoCEdAoPMtc8kleHV9lChoBkdAY1S46Oo5xWgHTegDaAhHQKD00h9LHuJ1fZQoaAZHQGOugJLM9r5oB03oA2gIR0ChAgxBNVR2dX2UKGgGR0AzZGDcuanaaAdNGgFoCEdAoQPxi5NGmXV9lChoBkdAYTP5M10knmgHTegDaAhHQKEFCQnQY1p1fZQoaAZHQF0Mz1bqyGBoB03oA2gIR0ChBRl/YraudX2UKGgGR0BeJuH31zySaAdN6ANoCEdAoQk+XVsk6nV9lChoBkdAOhKTfR/mT2gHTQkBaAhHQKEKW0GeMAF1fZQoaAZHQGZ7ei8FpwloB03oA2gIR0ChC5P69CeFdX2UKGgGR0Bi0bKJVKf4aAdN6ANoCEdAoQzCZtvXLHV9lChoBkdASomGoJiRXGgHS/loCEdAoQ0ZZSvTw3V9lChoBkdAXTNlXiiqQ2gHTegDaAhHQKENQD8tPHl1fZQoaAZHQGIJNTLns9loB03oA2gIR0ChDiRgy/KydX2UKGgGR0BhS5xtHhCMaAdN6ANoCEdAoRCvyqdYn3V9lChoBkdAYVUlgtvn82gHTegDaAhHQKESjoIv8Il1fZQoaAZHQF21Ve8f3exoB03oA2gIR0ChE3U+TvAodX2UKGgGR0BlFoQL/jsEaAdN6ANoCEdAoRbkRe1KG3V9lChoBkdAZDjIMBp5/2gHTegDaAhHQKEZXK15Sm91fZQoaAZHQGPZd5Y5ksloB03oA2gIR0ChHx79If8udX2UKGgGR0BkIvVwxWT5aAdN6ANoCEdAoSDKvkili3V9lChoBkdAY2vFBIFvAGgHTegDaAhHQKEttc/t6X11fZQoaAZHQGKnOez2OABoB03oA2gIR0ChLt3Upd8idX2UKGgGR0A648UEgW8AaAdL/GgIR0ChMRX531SPdX2UKGgGR0BmYaJKraM8aAdN6ANoCEdAoTOJGrjo6nV9lChoBkdAZmkaP0Zm7WgHTegDaAhHQKE06Nm16Vt1fZQoaAZHQGf5P863iJhoB03oA2gIR0ChNmjq4YrKdX2UKGgGR0BmVuBz3h4uaAdN6ANoCEdAoTfr/VAiV3V9lChoBkdAZB5q1w5vL2gHTegDaAhHQKE4YmzjWCp1fZQoaAZHQGDCC8vmHQBoB03oA2gIR0ChOI5vDP4VdX2UKGgGR0BieoCyQgcMaAdN6ANoCEdAoTmeIXTEznV9lChoBkdAYllCHARChWgHTegDaAhHQKE8M5+Ytxx1fZQoaAZHQEIb+WnjyWloB00BAWgIR0ChPWSX+l0pdX2UKGgGR0BigZAbADaHaAdN6ANoCEdAoT3Kr92ovXV9lChoBkdAXjZh1DBuXWgHTegDaAhHQKE+jj9XLeR1fZQoaAZHQGY9unl4keJoB03oA2gIR0ChQQnhCMP0dX2UKGgGR0BkhS7mMfihaAdN6ANoCEdAoUK5uCPIXHV9lChoBkdAZJUhNdqtYGgHTegDaAhHQKFG+mDUVi51fZQoaAZHQGODVwo9cKRoB03oA2gIR0ChWCQqRU3odX2UKGgGR0Bg3Y/PgNwzaAdN6ANoCEdAoVlYbGWD6HV9lChoBkdAaCnFa0QbuWgHTegDaAhHQKFbml+EytV1fZQoaAZHQGJTMa0hNdtoB03oA2gIR0ChXYrWAf+1dX2UKGgGR0BlrGBnSOR1aAdN6ANoCEdAoV+prLyMDXV9lChoBkdAZC0XHBDXv2gHTegDaAhHQKFgx8HfMwF1fZQoaAZHQGKPvDxb0OFoB03oA2gIR0ChYRrmQr+YdX2UKGgGR0BlMloexOclaAdN6ANoCEdAoWE+WyC4BnV9lChoBkdAYd3siSq2jWgHTegDaAhHQKFiHbAUL2J1fZQoaAZHQGdItq59Vm1oB03oA2gIR0ChZIInKGL2dX2UKGgGR0BlOpwuM+/yaAdN6ANoCEdAoWXTlzU7S3V9lChoBkdAYi9G6PKdQWgHTegDaAhHQKFmSGM4tHx1fZQoaAZHQGMWNg0CRwJoB03oA2gIR0ChZyBshxHYdX2UKGgGR0BmeidrftQbaAdN6ANoCEdAoWnMUbkwOHV9lChoBkdAZA42/i5uqGgHTegDaAhHQKFrqka/ATJ1fZQoaAZHQFt6uUUwi7loB03oA2gIR0Chcjjtoi9qdX2UKGgGR0BISr1/Ue+3aAdNDwFoCEdAoXW6K1og3nVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82770b26b4361cbe5045ea2abc054660fad22e091fb10871aca9e4f5b235c3d3
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a2b401338646d20502980e5ce31b10c87a652bf56d517d95c9f9d50bf0abefc
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.6961491, "std_reward": 15.93441655161178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-13T11:25:00.346392"}
|