mpatel57 commited on
Commit
f8a1630
1 Parent(s): a1b69a2

model card added

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail++
3
+ language:
4
+ - en
5
+ library_name: diffusers
6
+ tags:
7
+ - text-to-image
8
+ - prior
9
+ - unclip
10
+ - kandinskyv2.2
11
+ ---
12
+
13
+
14
+ # Introduction
15
+
16
+ This ECLIPSE model weight is a tiny (33M parameter) non-diffusion text-to-image prior model trained on 5M LAION-HighRes subset data.
17
+
18
+ Despite being so small and trained on limited amount of data, ECLIPSE priors achieves results that of 1 Billion parameter T2I prior models trained on millions of image-text pairs.
19
+
20
+ ## Installation
21
+ ```bash
22
+ git clone git@github.com:eclipse-t2i/eclipse-inference.git
23
+
24
+ conda create -p ./venv python=3.9
25
+ pip install -r requirements.txt
26
+ ```
27
+
28
+ ## Run Inference
29
+
30
+ This repository supports two pre-trained image decoders: [Karlo-v1-alpha](https://huggingface.co/kakaobrain/karlo-v1-alpha) and [Kandinsky-v2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder).
31
+ Note: ECLIPSE prior is not a diffusion model -- while image decoders are.
32
+
33
+ ### Karlo Inference
34
+ ```python
35
+ from src.pipelines.pipeline_unclip import UnCLIPPipeline
36
+ from src.priors.prior_transformer import PriorTransformer
37
+
38
+ prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_Karlo_Prior")
39
+ pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", prior=prior).to("cuda")
40
+
41
+ prompt="black apples in the basket"
42
+ images = pipe(prompt, decoder_guidance_scale=7.5).images
43
+
44
+ images[0]
45
+ ```
46
+
47
+ ### Kandinsky Inference
48
+ ```python
49
+ from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline
50
+ from src.priors.prior_transformer import PriorTransformer
51
+ from diffusers import DiffusionPipeline
52
+
53
+ prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior")
54
+ pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", prior=prior).to("cuda")
55
+
56
+ pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder").to("cuda")
57
+
58
+ prompt = "black apples in the basket"
59
+ image_embeds, negative_image_embeds = pipe_prior(prompt).to_tuple()
60
+ images = pipe(
61
+ num_inference_steps=50,
62
+ image_embeds=image_embeds,
63
+ negative_image_embeds=negative_image_embeds,
64
+ ).images
65
+
66
+ images[0]
67
+ ```