Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1208.83 +/- 60.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea510d8e9dc73ee29fb1fc64502a70a43393378445d923e9c156e0d035bb64e2
|
3 |
+
size 129283
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3314dd5dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3314dd5e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3314dd5ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3314dd5f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3314dda040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3314dda0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3314dda160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3314dda1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3314dda280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3314dda310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3314dda3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3314dda430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3314dd8e80>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 1992276,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679390878054391818,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPOpBD8aAmu/ivVFP/5QoD+fP6C/LcM1P5tPFD+fWJO9wZxhvXXaHT+l9LC+7Y84wN63VL/mFYk/GfKbv89gyj5bqNM/QnmWP2IBxT0YOiU+TApXvhEhuL4q9fe96dcUP9cskL/Dqgk/iPJ7PlYYDD8NFL0/dipIvzEDQz83MeY+/HklPkmpQsBAiWU/fxaTvzVYGb9NZITAY5fMP49TQUDdYcC+TDqtwAfJKL+F5Uk/JYi3PwbENMCXsmk+5/91wJ+tG79Zw0M+D+GSv2+nnj7XLJC/Bwbuv4jyez735em/KXBpP2A3mL/2m0U/scXWPxt1l7+rvos/vTDJPqdXFL+8LTC/0nZoP3Gunj+4SJ6+EkMNv+Vr+T9wgYi/ozrXPr+gkz+hjw5AZKY1Ph6xQ0BkdXC/iMYZv70IqT7poow+1yyQv8OqCT+I8ns+VhgMP3v9zj++Hqo+s3SkPp6CIkADDc2/aDp+P2KZYD+AdYS/Xa+xv+l+w70uH0E8USnEP33hKD+WvAc+I6e1vxF9wD/kjyK/Y8AsP66KOz5j3p0/a52YvxEbBMDCrlQ/CsFCPtcskL/Dqgk/iPJ7PlYYDD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAXXHS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuqGBPQAAAACOfuC/AAAAAMOL/70AAAAAUpvfPwAAAAAoWc09AAAAAE+T4D8AAAAAa7GdvQAAAABg3P2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmfHktQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHAGyD0AAAAA0TrnvwAAAACRRM49AAAAAEOu6j8AAAAAqKgJvgAAAAC2Buc/AAAAAAe1cb0AAAAATPf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEktfrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBFIes9AAAAAJ1g8b8AAAAApRxzvAAAAABVePM/AAAAAIblDrwAAAAA7rbxPwAAAAClzuQ8AAAAAJxK/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWyk42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPGS0vQAAAADBVfm/AAAAAFUSd70AAAAA6OjbPwAAAABqdg4+AAAAAMkU3z8AAAAALd7+PAAAAAB3w/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0038719999999999866,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJBPnOUt7KKMAWyUTegDjAF0lEdAshmxamoBJnV9lChoBkdAk+UVtCRfW2gHTegDaAhHQLIaOvNeMQ51fZQoaAZHQJUIIkcCHRFoB03oA2gIR0CyG+NyksSTdX2UKGgGR0CTZib5dnkDaAdN6ANoCEdAsh9dA5aNdnV9lChoBkdAjy3A1vVEu2gHTegDaAhHQLIiSNYKYzB1fZQoaAZHQJKIp6iTMaFoB03oA2gIR0CyIuvjS5RTdX2UKGgGR0CRIekNnXd1aAdN6ANoCEdAsiRkLjPv8nV9lChoBkdAkizmUGFBY2gHTegDaAhHQLInFrdnCfp1fZQoaAZHQJHB2lrM1TBoB03oA2gIR0CyKQZqZc9odX2UKGgGR0CSTv+rU9ZBaAdN6ANoCEdAsimLyWiUPnV9lChoBkdAkPXt1U2kz2gHTegDaAhHQLIrE8hs67x1fZQoaAZHQJKhkkZ75VRoB03oA2gIR0CyLlDOTq0MdX2UKGgGR0CSzwDiOvMbaAdN6ANoCEdAsjEiOXE61nV9lChoBkdAk9OrY02tMmgHTegDaAhHQLIx/wNb1RN1fZQoaAZHQIuIjtoi9qVoB03oA2gIR0CyM50CzTnadX2UKGgGR0CQAQuyu6mPaAdN6ANoCEdAsjZjVd5Y5nV9lChoBkdAkL+7fk3juWgHTegDaAhHQLI4S8uBczJ1fZQoaAZHQJLmBv1lGw1oB03oA2gIR0CyON56Uqx1dX2UKGgGR0CQ11uv2Xb/aAdN6ANoCEdAsjpmsySFG3V9lChoBkdAkFbhf8dgfGgHTegDaAhHQLI91jTKDCh1fZQoaAZHQJAQJuqFRHhoB03oA2gIR0CyQNdfG+9KdX2UKGgGR0CVLqyJsO5KaAdN6ANoCEdAskGvg75mAnV9lChoBkdAk8pHdoFmnWgHTegDaAhHQLJDUa7EpAl1fZQoaAZHQJTWfQE6kqNoB03oA2gIR0CyRgQYHgP3dX2UKGgGR0CQDjdQfp2VaAdN6ANoCEdAskfg5zYEn3V9lChoBkdAlGNXvx6OYWgHTegDaAhHQLJIZwPRRdh1fZQoaAZHQJPLjRF7UodoB03oA2gIR0CySgcbedkKdX2UKGgGR0CU8kEwWWQfaAdN6ANoCEdAsk0+BWgezXV9lChoBkdAllCMRUWEb2gHTegDaAhHQLJP/nWattB1fZQoaAZHQJYTMFLWZqpoB03oA2gIR0CyUMa3RXwLdX2UKGgGR0CVJjdMCcPOaAdN6ANoCEdAslJ9XyRSxnV9lChoBkdAleN6Ae7tiWgHTegDaAhHQLJVU+Pikwh1fZQoaAZHQJdT5eWv8qFoB03oA2gIR0CyV0OKKpDNdX2UKGgGR0CYEs7E5yU+aAdN6ANoCEdAslfL+wTufHV9lChoBkdAmPVkM1CPZWgHTegDaAhHQLJZXexfOUt1fZQoaAZHQJdkRfVqeshoB03oA2gIR0CyXIXVsk6cdX2UKGgGR0CWam8FY+0PaAdN6ANoCEdAsl+kOnVG1HV9lChoBkdAli1m5c1O02gHTegDaAhHQLJggekHlfZ1fZQoaAZHQJezJt2s7uFoB03oA2gIR0CyYiw9FF2FdX2UKGgGR0CV/O5hBqsVaAdN6ANoCEdAsmUClGgBcXV9lChoBkdAl7k6LjxTbWgHTegDaAhHQLJm9iR4hU11fZQoaAZHQJQXi8L8aXNoB03oA2gIR0CyZ338XN1RdX2UKGgGR0CV/V3dsSCfaAdN6ANoCEdAsmjxL127nXV9lChoBkdAlF+z9GZuymgHTegDaAhHQLJsDDSPU8V1fZQoaAZHQJVyNfeDWbxoB03oA2gIR0CybuDzND+jdX2UKGgGR0CPeYXFcY65aAdN6ANoCEdAsm+pUo8ZDXV9lChoBkdAlJDRWDHwPWgHTegDaAhHQLJxbrYoRZl1fZQoaAZHQJYVX+kxh2JoB03oA2gIR0CydAlfmcOLdX2UKGgGR0CXPBFxGUfQaAdN6ANoCEdAsnXfoPkJbHV9lChoBkdAmE1k1yeZomgHTegDaAhHQLJ2aYqG1x91fZQoaAZHQJZPoaAFxGVoB03oA2gIR0Cyd+skpqh2dX2UKGgGR0CY3gQKrq+raAdN6ANoCEdAsnrkF9roGXV9lChoBkdAmJVcrqdH2GgHTegDaAhHQLJ9vdQwbl11fZQoaAZHQJg86sySFGpoB03oA2gIR0CyfpgdwNsndX2UKGgGR0CXuductoSMaAdN6ANoCEdAsoCrQ3PzF3V9lChoBkdAlvC8YuTRpmgHTegDaAhHQLKDUFvQ4S91fZQoaAZHQJgUDDR+jM5oB03oA2gIR0CyhU7l3hXKdX2UKGgGR0CW/llenhsJaAdN6ANoCEdAsoXkH5aePXV9lChoBkdAl7qyGJvYOGgHTegDaAhHQLKHXOJcgQp1fZQoaAZHQJSfBbqyGBZoB03oA2gIR0CyijHHvMKUdX2UKGgGR0CX28wwj+rEaAdN6ANoCEdAsoz0ZrHlwXV9lChoBkdAkxUv9tMwlGgHTegDaAhHQLKNzt52Qnx1fZQoaAZHQJYdyzD4xlBoB03oA2gIR0Cyj/vpD/lydX2UKGgGR0CVHZXRPXTWaAdN6ANoCEdAspLI08/2TXV9lChoBkdAlpc6V6eGwmgHTegDaAhHQLKUrR5TqB51fZQoaAZHQJWAlhjOLR9oB03oA2gIR0CylTZqREF4dX2UKGgGR0CV/LV0tAcDaAdN6ANoCEdAspbKkVN5+3V9lChoBkdAlYS5DRc/uGgHTegDaAhHQLKZm4agmJF1fZQoaAZHQJdOHdBSk0toB03oA2gIR0CynF32VVxTdX2UKGgGR0CXprSbYsd1aAdN6ANoCEdAsp0sMspXqHV9lChoBkdAl6YAYUFjeGgHTegDaAhHQLKfZbWmP5p1fZQoaAZHQJe3z/dZaFFoB03oA2gIR0CyoigVXV9XdX2UKGgGR0CZKounMt9QaAdN6ANoCEdAsqQvhQ3xWnV9lChoBkdAl7p6wD/2kGgHTegDaAhHQLKks90zTF51fZQoaAZHQJd5EH4XXRRoB03oA2gIR0Cypk8vAXVLdX2UKGgGR0CWvuw+dK/VaAdN6ANoCEdAsqkBNUOuq3V9lChoBkdAlnqCzw+dLGgHTegDaAhHQLKrla6z3RJ1fZQoaAZHQJVpLSv1UVBoB03oA2gIR0CyrGAoTfzjdX2UKGgGR0CT2j3kPtlaaAdN6ANoCEdAsq7NDb8FZHV9lChoBkdAlGTqQV9F4WgHTegDaAhHQLKxo6zmfXh1fZQoaAZHQJK4QlZ5iVloB03oA2gIR0Cys58baRISdX2UKGgGR0CXN5qgAZKnaAdN6ANoCEdAsrQd2eQMhHV9lChoBkdAlT2c1O0sv2gHTegDaAhHQLK1lNOM2m51fZQoaAZHQJOQyMuOCGxoB03oA2gIR0CyuFafvnbJdX2UKGgGR0CU4qm0mdAgaAdN6ANoCEdAsrrc5ggHNXV9lChoBkdAlWp/RiPQwGgHTegDaAhHQLK7mosqaw51fZQoaAZHQJUAId5prUNoB03oA2gIR0Cyvghkqc3EdX2UKGgGR0CVwCCNCJGfaAdN6ANoCEdAssDyeXiR4nV9lChoBkdAlaLHqJMxoWgHTegDaAhHQLLCzo0Q9Rt1fZQoaAZHQJWemNm16VtoB03oA2gIR0Cyw1WRJVbSdX2UKGgGR0CU9y4iX6ZZaAdN6ANoCEdAssTu9WZJCnV9lChoBkdAldU+dXko4WgHTegDaAhHQLLHsJW/8EV1fZQoaAZHQJSJhASnLq5oB03oA2gIR0CyyhAu/UONdX2UKGgGR0CV7lZA6dUbaAdN6ANoCEdAssrZAt4A0nV9lChoBkdAkaEoacZtN2gHTegDaAhHQLLNNb6P8yh1fZQoaAZHQJVSNnyup0hoB03oA2gIR0Cy0EnLzPKMdX2UKGgGR0CTvAQ1rIo3aAdN6ANoCEdAstIvHxSYPXV9lChoBkdAk7QU7KaG6GgHTegDaAhHQLLSsr5qM3t1fZQoaAZHQJRSNXtBv75oB03oA2gIR0Cy1ESGi5/cdX2UKGgGR0CQfuspobn6aAdN6ANoCEdAstcrEVFhHHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62258,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37c28e1d29970f81ddd1abf0577eff7fc5ee31c1950d29b09626232e274f5b2a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f81e9ca4e0ef36eab7572a541487c81a3872b82d877cae23b7c0ae142f360b25
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3314dd5dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3314dd5e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3314dd5ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3314dd5f70>", "_build": "<function ActorCriticPolicy._build at 0x7f3314dda040>", "forward": "<function ActorCriticPolicy.forward at 0x7f3314dda0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3314dda160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3314dda1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3314dda280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3314dda310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3314dda3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3314dda430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3314dd8e80>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1992276, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679390878054391818, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPOpBD8aAmu/ivVFP/5QoD+fP6C/LcM1P5tPFD+fWJO9wZxhvXXaHT+l9LC+7Y84wN63VL/mFYk/GfKbv89gyj5bqNM/QnmWP2IBxT0YOiU+TApXvhEhuL4q9fe96dcUP9cskL/Dqgk/iPJ7PlYYDD8NFL0/dipIvzEDQz83MeY+/HklPkmpQsBAiWU/fxaTvzVYGb9NZITAY5fMP49TQUDdYcC+TDqtwAfJKL+F5Uk/JYi3PwbENMCXsmk+5/91wJ+tG79Zw0M+D+GSv2+nnj7XLJC/Bwbuv4jyez735em/KXBpP2A3mL/2m0U/scXWPxt1l7+rvos/vTDJPqdXFL+8LTC/0nZoP3Gunj+4SJ6+EkMNv+Vr+T9wgYi/ozrXPr+gkz+hjw5AZKY1Ph6xQ0BkdXC/iMYZv70IqT7poow+1yyQv8OqCT+I8ns+VhgMP3v9zj++Hqo+s3SkPp6CIkADDc2/aDp+P2KZYD+AdYS/Xa+xv+l+w70uH0E8USnEP33hKD+WvAc+I6e1vxF9wD/kjyK/Y8AsP66KOz5j3p0/a52YvxEbBMDCrlQ/CsFCPtcskL/Dqgk/iPJ7PlYYDD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAXXHS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuqGBPQAAAACOfuC/AAAAAMOL/70AAAAAUpvfPwAAAAAoWc09AAAAAE+T4D8AAAAAa7GdvQAAAABg3P2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmfHktQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHAGyD0AAAAA0TrnvwAAAACRRM49AAAAAEOu6j8AAAAAqKgJvgAAAAC2Buc/AAAAAAe1cb0AAAAATPf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEktfrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBFIes9AAAAAJ1g8b8AAAAApRxzvAAAAABVePM/AAAAAIblDrwAAAAA7rbxPwAAAAClzuQ8AAAAAJxK/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWyk42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPGS0vQAAAADBVfm/AAAAAFUSd70AAAAA6OjbPwAAAABqdg4+AAAAAMkU3z8AAAAALd7+PAAAAAB3w/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0038719999999999866, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJBPnOUt7KKMAWyUTegDjAF0lEdAshmxamoBJnV9lChoBkdAk+UVtCRfW2gHTegDaAhHQLIaOvNeMQ51fZQoaAZHQJUIIkcCHRFoB03oA2gIR0CyG+NyksSTdX2UKGgGR0CTZib5dnkDaAdN6ANoCEdAsh9dA5aNdnV9lChoBkdAjy3A1vVEu2gHTegDaAhHQLIiSNYKYzB1fZQoaAZHQJKIp6iTMaFoB03oA2gIR0CyIuvjS5RTdX2UKGgGR0CRIekNnXd1aAdN6ANoCEdAsiRkLjPv8nV9lChoBkdAkizmUGFBY2gHTegDaAhHQLInFrdnCfp1fZQoaAZHQJHB2lrM1TBoB03oA2gIR0CyKQZqZc9odX2UKGgGR0CSTv+rU9ZBaAdN6ANoCEdAsimLyWiUPnV9lChoBkdAkPXt1U2kz2gHTegDaAhHQLIrE8hs67x1fZQoaAZHQJKhkkZ75VRoB03oA2gIR0CyLlDOTq0MdX2UKGgGR0CSzwDiOvMbaAdN6ANoCEdAsjEiOXE61nV9lChoBkdAk9OrY02tMmgHTegDaAhHQLIx/wNb1RN1fZQoaAZHQIuIjtoi9qVoB03oA2gIR0CyM50CzTnadX2UKGgGR0CQAQuyu6mPaAdN6ANoCEdAsjZjVd5Y5nV9lChoBkdAkL+7fk3juWgHTegDaAhHQLI4S8uBczJ1fZQoaAZHQJLmBv1lGw1oB03oA2gIR0CyON56Uqx1dX2UKGgGR0CQ11uv2Xb/aAdN6ANoCEdAsjpmsySFG3V9lChoBkdAkFbhf8dgfGgHTegDaAhHQLI91jTKDCh1fZQoaAZHQJAQJuqFRHhoB03oA2gIR0CyQNdfG+9KdX2UKGgGR0CVLqyJsO5KaAdN6ANoCEdAskGvg75mAnV9lChoBkdAk8pHdoFmnWgHTegDaAhHQLJDUa7EpAl1fZQoaAZHQJTWfQE6kqNoB03oA2gIR0CyRgQYHgP3dX2UKGgGR0CQDjdQfp2VaAdN6ANoCEdAskfg5zYEn3V9lChoBkdAlGNXvx6OYWgHTegDaAhHQLJIZwPRRdh1fZQoaAZHQJPLjRF7UodoB03oA2gIR0CySgcbedkKdX2UKGgGR0CU8kEwWWQfaAdN6ANoCEdAsk0+BWgezXV9lChoBkdAllCMRUWEb2gHTegDaAhHQLJP/nWattB1fZQoaAZHQJYTMFLWZqpoB03oA2gIR0CyUMa3RXwLdX2UKGgGR0CVJjdMCcPOaAdN6ANoCEdAslJ9XyRSxnV9lChoBkdAleN6Ae7tiWgHTegDaAhHQLJVU+Pikwh1fZQoaAZHQJdT5eWv8qFoB03oA2gIR0CyV0OKKpDNdX2UKGgGR0CYEs7E5yU+aAdN6ANoCEdAslfL+wTufHV9lChoBkdAmPVkM1CPZWgHTegDaAhHQLJZXexfOUt1fZQoaAZHQJdkRfVqeshoB03oA2gIR0CyXIXVsk6cdX2UKGgGR0CWam8FY+0PaAdN6ANoCEdAsl+kOnVG1HV9lChoBkdAli1m5c1O02gHTegDaAhHQLJggekHlfZ1fZQoaAZHQJezJt2s7uFoB03oA2gIR0CyYiw9FF2FdX2UKGgGR0CV/O5hBqsVaAdN6ANoCEdAsmUClGgBcXV9lChoBkdAl7k6LjxTbWgHTegDaAhHQLJm9iR4hU11fZQoaAZHQJQXi8L8aXNoB03oA2gIR0CyZ338XN1RdX2UKGgGR0CV/V3dsSCfaAdN6ANoCEdAsmjxL127nXV9lChoBkdAlF+z9GZuymgHTegDaAhHQLJsDDSPU8V1fZQoaAZHQJVyNfeDWbxoB03oA2gIR0CybuDzND+jdX2UKGgGR0CPeYXFcY65aAdN6ANoCEdAsm+pUo8ZDXV9lChoBkdAlJDRWDHwPWgHTegDaAhHQLJxbrYoRZl1fZQoaAZHQJYVX+kxh2JoB03oA2gIR0CydAlfmcOLdX2UKGgGR0CXPBFxGUfQaAdN6ANoCEdAsnXfoPkJbHV9lChoBkdAmE1k1yeZomgHTegDaAhHQLJ2aYqG1x91fZQoaAZHQJZPoaAFxGVoB03oA2gIR0Cyd+skpqh2dX2UKGgGR0CY3gQKrq+raAdN6ANoCEdAsnrkF9roGXV9lChoBkdAmJVcrqdH2GgHTegDaAhHQLJ9vdQwbl11fZQoaAZHQJg86sySFGpoB03oA2gIR0CyfpgdwNsndX2UKGgGR0CXuductoSMaAdN6ANoCEdAsoCrQ3PzF3V9lChoBkdAlvC8YuTRpmgHTegDaAhHQLKDUFvQ4S91fZQoaAZHQJgUDDR+jM5oB03oA2gIR0CyhU7l3hXKdX2UKGgGR0CW/llenhsJaAdN6ANoCEdAsoXkH5aePXV9lChoBkdAl7qyGJvYOGgHTegDaAhHQLKHXOJcgQp1fZQoaAZHQJSfBbqyGBZoB03oA2gIR0CyijHHvMKUdX2UKGgGR0CX28wwj+rEaAdN6ANoCEdAsoz0ZrHlwXV9lChoBkdAkxUv9tMwlGgHTegDaAhHQLKNzt52Qnx1fZQoaAZHQJYdyzD4xlBoB03oA2gIR0Cyj/vpD/lydX2UKGgGR0CVHZXRPXTWaAdN6ANoCEdAspLI08/2TXV9lChoBkdAlpc6V6eGwmgHTegDaAhHQLKUrR5TqB51fZQoaAZHQJWAlhjOLR9oB03oA2gIR0CylTZqREF4dX2UKGgGR0CV/LV0tAcDaAdN6ANoCEdAspbKkVN5+3V9lChoBkdAlYS5DRc/uGgHTegDaAhHQLKZm4agmJF1fZQoaAZHQJdOHdBSk0toB03oA2gIR0CynF32VVxTdX2UKGgGR0CXprSbYsd1aAdN6ANoCEdAsp0sMspXqHV9lChoBkdAl6YAYUFjeGgHTegDaAhHQLKfZbWmP5p1fZQoaAZHQJe3z/dZaFFoB03oA2gIR0CyoigVXV9XdX2UKGgGR0CZKounMt9QaAdN6ANoCEdAsqQvhQ3xWnV9lChoBkdAl7p6wD/2kGgHTegDaAhHQLKks90zTF51fZQoaAZHQJd5EH4XXRRoB03oA2gIR0Cypk8vAXVLdX2UKGgGR0CWvuw+dK/VaAdN6ANoCEdAsqkBNUOuq3V9lChoBkdAlnqCzw+dLGgHTegDaAhHQLKrla6z3RJ1fZQoaAZHQJVpLSv1UVBoB03oA2gIR0CyrGAoTfzjdX2UKGgGR0CT2j3kPtlaaAdN6ANoCEdAsq7NDb8FZHV9lChoBkdAlGTqQV9F4WgHTegDaAhHQLKxo6zmfXh1fZQoaAZHQJK4QlZ5iVloB03oA2gIR0Cys58baRISdX2UKGgGR0CXN5qgAZKnaAdN6ANoCEdAsrQd2eQMhHV9lChoBkdAlT2c1O0sv2gHTegDaAhHQLK1lNOM2m51fZQoaAZHQJOQyMuOCGxoB03oA2gIR0CyuFafvnbJdX2UKGgGR0CU4qm0mdAgaAdN6ANoCEdAsrrc5ggHNXV9lChoBkdAlWp/RiPQwGgHTegDaAhHQLK7mosqaw51fZQoaAZHQJUAId5prUNoB03oA2gIR0Cyvghkqc3EdX2UKGgGR0CVwCCNCJGfaAdN6ANoCEdAssDyeXiR4nV9lChoBkdAlaLHqJMxoWgHTegDaAhHQLLCzo0Q9Rt1fZQoaAZHQJWemNm16VtoB03oA2gIR0Cyw1WRJVbSdX2UKGgGR0CU9y4iX6ZZaAdN6ANoCEdAssTu9WZJCnV9lChoBkdAldU+dXko4WgHTegDaAhHQLLHsJW/8EV1fZQoaAZHQJSJhASnLq5oB03oA2gIR0CyyhAu/UONdX2UKGgGR0CV7lZA6dUbaAdN6ANoCEdAssrZAt4A0nV9lChoBkdAkaEoacZtN2gHTegDaAhHQLLNNb6P8yh1fZQoaAZHQJVSNnyup0hoB03oA2gIR0Cy0EnLzPKMdX2UKGgGR0CTvAQ1rIo3aAdN6ANoCEdAstIvHxSYPXV9lChoBkdAk7QU7KaG6GgHTegDaAhHQLLSsr5qM3t1fZQoaAZHQJRSNXtBv75oB03oA2gIR0Cy1ESGi5/cdX2UKGgGR0CQfuspobn6aAdN6ANoCEdAstcrEVFhHHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62258, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6de3eb7b60fd7abbd17ff436b52441dd06af10da47e1e885daec5126cc108482
|
3 |
+
size 1014304
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1208.8348408500665, "std_reward": 60.280452748329154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T10:37:25.796037"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:054254df383e187b42911748f5f9a92ac86dfb31133b76ce1e9ac3bc2ffddd9e
|
3 |
+
size 2136
|