Update README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
4 |
-
-
|
5 |
metrics:
|
|
|
|
|
6 |
- f1
|
7 |
- accuracy
|
8 |
-
- recall
|
9 |
-
- precision
|
10 |
-
pipeline_tag: image-to-text
|
11 |
widget:
|
12 |
- text: The process starts when the customer enters the shop. The customer then takes
|
13 |
the product from the shelf. The customer then pays for the product and leaves
|
@@ -29,4 +28,83 @@ widget:
|
|
29 |
order is packed, the shipping department delivers the order to the customer. Finally,
|
30 |
the process ends with an 'End' event, when the customer receives their order.
|
31 |
example_title: Example 3
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
- f1
|
9 |
- accuracy
|
|
|
|
|
|
|
10 |
widget:
|
11 |
- text: The process starts when the customer enters the shop. The customer then takes
|
12 |
the product from the shelf. The customer then pays for the product and leaves
|
|
|
28 |
order is packed, the shipping department delivers the order to the customer. Finally,
|
29 |
the process ends with an 'End' event, when the customer receives their order.
|
30 |
example_title: Example 3
|
31 |
+
base_model: bert-base-cased
|
32 |
+
model-index:
|
33 |
+
- name: bert-finetuned-v4
|
34 |
+
results: []
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# bpmn-information-extraction
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a dataset containing 90 textual process descriptions.
|
43 |
+
|
44 |
+
The dataset contains 5 target labels:
|
45 |
+
|
46 |
+
* `AGENT`
|
47 |
+
* `TASK`
|
48 |
+
* `TASK_INFO`
|
49 |
+
* `PROCESS_INFO`
|
50 |
+
* `CONDITION`
|
51 |
+
|
52 |
+
It achieves the following results on the evaluation set:
|
53 |
+
- Loss: 0.2909
|
54 |
+
- Precision: 0.8557
|
55 |
+
- Recall: 0.9247
|
56 |
+
- F1: 0.8889
|
57 |
+
- Accuracy: 0.9285
|
58 |
+
|
59 |
+
## Model description
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Intended uses & limitations
|
64 |
+
|
65 |
+
More information needed
|
66 |
+
|
67 |
+
## Training and evaluation data
|
68 |
+
|
69 |
+
More information needed
|
70 |
+
|
71 |
+
## Training procedure
|
72 |
+
|
73 |
+
### Training hyperparameters
|
74 |
+
|
75 |
+
The following hyperparameters were used during training:
|
76 |
+
- learning_rate: 2e-05
|
77 |
+
- train_batch_size: 8
|
78 |
+
- eval_batch_size: 8
|
79 |
+
- seed: 42
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: linear
|
82 |
+
- num_epochs: 15
|
83 |
+
|
84 |
+
### Training results
|
85 |
+
|
86 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
87 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
88 |
+
| 2.0586 | 1.0 | 10 | 1.5601 | 0.1278 | 0.1559 | 0.1404 | 0.4750 |
|
89 |
+
| 1.3702 | 2.0 | 20 | 1.0113 | 0.3947 | 0.5645 | 0.4646 | 0.7150 |
|
90 |
+
| 0.8872 | 3.0 | 30 | 0.6645 | 0.5224 | 0.6882 | 0.5940 | 0.8051 |
|
91 |
+
| 0.5341 | 4.0 | 40 | 0.4741 | 0.6754 | 0.8280 | 0.7440 | 0.8541 |
|
92 |
+
| 0.3221 | 5.0 | 50 | 0.3831 | 0.7523 | 0.8817 | 0.8119 | 0.8883 |
|
93 |
+
| 0.2168 | 6.0 | 60 | 0.3297 | 0.7731 | 0.8978 | 0.8308 | 0.9079 |
|
94 |
+
| 0.1565 | 7.0 | 70 | 0.2998 | 0.8195 | 0.9032 | 0.8593 | 0.9128 |
|
95 |
+
| 0.1227 | 8.0 | 80 | 0.3227 | 0.8038 | 0.9032 | 0.8506 | 0.9099 |
|
96 |
+
| 0.0957 | 9.0 | 90 | 0.2840 | 0.8431 | 0.9247 | 0.8821 | 0.9216 |
|
97 |
+
| 0.077 | 10.0 | 100 | 0.2914 | 0.8252 | 0.9140 | 0.8673 | 0.9216 |
|
98 |
+
| 0.0691 | 11.0 | 110 | 0.2850 | 0.8431 | 0.9247 | 0.8821 | 0.9285 |
|
99 |
+
| 0.059 | 12.0 | 120 | 0.2886 | 0.8564 | 0.9301 | 0.8918 | 0.9285 |
|
100 |
+
| 0.0528 | 13.0 | 130 | 0.2838 | 0.8564 | 0.9301 | 0.8918 | 0.9305 |
|
101 |
+
| 0.0488 | 14.0 | 140 | 0.2881 | 0.8515 | 0.9247 | 0.8866 | 0.9305 |
|
102 |
+
| 0.049 | 15.0 | 150 | 0.2909 | 0.8557 | 0.9247 | 0.8889 | 0.9285 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.25.1
|
108 |
+
- Pytorch 1.13.0+cu116
|
109 |
+
- Datasets 2.8.0
|
110 |
+
- Tokenizers 0.13.2
|