drAbreu commited on
Commit
361a174
·
verified ·
1 Parent(s): bbf2ffa

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,13 +25,13 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8094689663785088
29
  - name: Recall
30
  type: recall
31
- value: 0.8519438034874551
32
  - name: F1
33
  type: f1
34
- value: 0.8301634398502927
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.1442
45
- - Accuracy Score: 0.9554
46
- - Precision: 0.8095
47
- - Recall: 0.8519
48
- - F1: 0.8302
49
 
50
  ## Model description
51
 
@@ -77,8 +77,8 @@ No additional optimizer arguments
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
79
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
80
- | 0.1078 | 1.0 | 864 | 0.1402 | 0.9529 | 0.8074 | 0.8323 | 0.8196 |
81
- | 0.0738 | 2.0 | 1728 | 0.1442 | 0.9554 | 0.8095 | 0.8519 | 0.8302 |
82
 
83
 
84
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8140302498537645
29
  - name: Recall
30
  type: recall
31
+ value: 0.8535940649005462
32
  - name: F1
33
  type: f1
34
+ value: 0.8333428384042887
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the source_data dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.1432
45
+ - Accuracy Score: 0.9557
46
+ - Precision: 0.8140
47
+ - Recall: 0.8536
48
+ - F1: 0.8333
49
 
50
  ## Model description
51
 
 
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
79
  |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
80
+ | 0.1092 | 1.0 | 864 | 0.1403 | 0.9520 | 0.8061 | 0.8293 | 0.8175 |
81
+ | 0.075 | 2.0 | 1728 | 0.1432 | 0.9557 | 0.8140 | 0.8536 | 0.8333 |
82
 
83
 
84
  ### Framework versions